We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also prove, along the way, a result of independent interest, giving sufficient conditions for smoothness of the total space of the relative compactified Jacobian of a family of locally planar curves.

Migliorini, L., Shende, V., Viviani, F. (2021). A support theorem for Hilbert schemes of planar curves, II. COMPOSITIO MATHEMATICA, 157(4), 835-882 [10.1112/S0010437X20007745].

A support theorem for Hilbert schemes of planar curves, II

Viviani F.
2021-01-01

Abstract

We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also prove, along the way, a result of independent interest, giving sufficient conditions for smoothness of the total space of the relative compactified Jacobian of a family of locally planar curves.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
English
Con Impact Factor ISI
compactified Jacobians
decomposition theorem
Hilbert scheme of points
perverse filtration
reduced curves with locally planar singularities
support theorem
Migliorini, L., Shende, V., Viviani, F. (2021). A support theorem for Hilbert schemes of planar curves, II. COMPOSITIO MATHEMATICA, 157(4), 835-882 [10.1112/S0010437X20007745].
Migliorini, L; Shende, V; Viviani, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Support-Hilbert-planar(PUBLISHED).pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright degli autori
Dimensione 857.72 kB
Formato Adobe PDF
857.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/360860
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact