Algebraic curves have a discrete analog in finite graphs. Pursuing this analogy, we prove a Torelli theorem for graphs. Namely, we show that two graphs have the same Albanese torus if and only if the graphs obtained from them by contracting all separating edges are 2-isomorphic. In particular, the strong Torelli theorem holds for 3-connected graphs. Next, using the correspondence between compact tropical curves and metric graphs, we prove a tropical Torelli theorem giving necessary and sufficient conditions for two tropical curves to have the same principally polarized tropical Jacobian. By contrast, we prove that, in a suitably defined sense, the tropical Torelli map has degree one. Finally, we describe some natural posets associated to a graph and prove that they characterize its Delaunay decomposition.
Caporaso, L., Viviani, F. (2010). Torelli theorem for graphs and tropical curves. DUKE MATHEMATICAL JOURNAL, 153(1), 129-171 [10.1215/00127094-2010-022].
Torelli theorem for graphs and tropical curves
CAPORASO, Lucia;VIVIANI, FILIPPO
2010-01-01
Abstract
Algebraic curves have a discrete analog in finite graphs. Pursuing this analogy, we prove a Torelli theorem for graphs. Namely, we show that two graphs have the same Albanese torus if and only if the graphs obtained from them by contracting all separating edges are 2-isomorphic. In particular, the strong Torelli theorem holds for 3-connected graphs. Next, using the correspondence between compact tropical curves and metric graphs, we prove a tropical Torelli theorem giving necessary and sufficient conditions for two tropical curves to have the same principally polarized tropical Jacobian. By contrast, we prove that, in a suitably defined sense, the tropical Torelli map has degree one. Finally, we describe some natural posets associated to a graph and prove that they characterize its Delaunay decomposition.File | Dimensione | Formato | |
---|---|---|---|
TorelliGraphDMJprint.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
364.37 kB
Formato
Adobe PDF
|
364.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.