We describe a procedure to deform the dynamics of a two-dimensional conformal net to possibly obtain a Haag-Kastler net on the de Sitter spacetime. The new dynamics is given by adding a primary field smeared on the time-zero circle to the Lorentz generators of the conformal net. As an example, we take an extension of the chiral U(1)-current net by a charged field with conformal dimension d < 1/4. We show that the perturbing operators are defined on a dense domain.

Jäkel, C.d., Tanimoto, Y. (2023). Towards integrable perturbation of 2d CFT on de Sitter space. LETTERS IN MATHEMATICAL PHYSICS, 113(4) [10.1007/s11005-023-01709-4].

Towards integrable perturbation of 2d CFT on de Sitter space

Tanimoto, Yoh
2023-01-01

Abstract

We describe a procedure to deform the dynamics of a two-dimensional conformal net to possibly obtain a Haag-Kastler net on the de Sitter spacetime. The new dynamics is given by adding a primary field smeared on the time-zero circle to the Lorentz generators of the conformal net. As an example, we take an extension of the chiral U(1)-current net by a charged field with conformal dimension d < 1/4. We show that the perturbing operators are defined on a dense domain.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07
English
Con Impact Factor ISI
Modular Hamiltonian
Geodesic KMS condition
de Sitter space
Primary fields
Conformal field theory
Integrable perturbation
Jäkel, C.d., Tanimoto, Y. (2023). Towards integrable perturbation of 2d CFT on de Sitter space. LETTERS IN MATHEMATICAL PHYSICS, 113(4) [10.1007/s11005-023-01709-4].
Jäkel, Cd; Tanimoto, Y
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
36_JT_TowardsIntegrablePerturbation.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 394.79 kB
Formato Adobe PDF
394.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/358174
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact