In this paper two methodologies, able to avoid CO2 dispersion in atmosphere, have been analyzed: treating exhaust gases in order to remove, liquefy and store the produced carbon dioxide; de-carbonizing fossil fuels before using them in the combustion in order to inhibit completely carbon dioxide production. These methodologies have been implemented in advanced power plants based oil gas turbine: a combined cycle power plant (CC), fed by natural gas, and an integrated gasification combined cycle (IGCC), fed by coal. The exhaust gas treatment is based on a chemical process of absorption, while the fossil fuel decarbonization is based oil partial oxidation of methane, steam methane reforming and coal gasification. These systems require material and energetic integrations with the power sections and so the best interconnections Must be investigated in order to obtain good overall performance. With reference to thermodynamic and economic performance, significant comparisons have been made between the above mentioned reference plants. Ail efficiency decrease and ail increase in the cost of electricity have been obtained when power plants are equipped with systems able to reduce CO2 emissions. However, in order to obtain low CO2 emissions when coal is used, the coal decarbonization must be implemented: in this case it is possible to attain a global efficiency of about 38%, a specific emission of 0.1117 kg/kWh and an increase of kWh cost of about 32%. Vice versa, in order to obtain low CO2 emissions when natural gas is used, the exhaust gas treatment must be implemented: in this case it is possible to attain a global efficiency of about 50.7%, a specific emission of 0.0391 kg/kWh and ail increase of kWh cost of about 15%. The clean use of coal seems to have good potential because it allows low energy penalizations (about 7.5 percentage points) and economic increases of about 32%. Because of the great availability, the homogeneous distribution and the low cost of this fuel, these results seem to be very interesting especially in the viewpoint of a transition towards the "hydrogen economy", based, at least in the medium term, oil fossil fuels.

Gambini, M., Vellini, M. (2008). CO2 emission abatement in CC-IGCC power plants: energy and economic comparisons. In ES2008: proceedings of the 2nd international conference on energy sustainability (pp.247-261). New York : ASME [10.1115/ES2008-54166].

CO2 emission abatement in CC-IGCC power plants: energy and economic comparisons

GAMBINI, MARCO;VELLINI, MICHELA
2008-01-01

Abstract

In this paper two methodologies, able to avoid CO2 dispersion in atmosphere, have been analyzed: treating exhaust gases in order to remove, liquefy and store the produced carbon dioxide; de-carbonizing fossil fuels before using them in the combustion in order to inhibit completely carbon dioxide production. These methodologies have been implemented in advanced power plants based oil gas turbine: a combined cycle power plant (CC), fed by natural gas, and an integrated gasification combined cycle (IGCC), fed by coal. The exhaust gas treatment is based on a chemical process of absorption, while the fossil fuel decarbonization is based oil partial oxidation of methane, steam methane reforming and coal gasification. These systems require material and energetic integrations with the power sections and so the best interconnections Must be investigated in order to obtain good overall performance. With reference to thermodynamic and economic performance, significant comparisons have been made between the above mentioned reference plants. Ail efficiency decrease and ail increase in the cost of electricity have been obtained when power plants are equipped with systems able to reduce CO2 emissions. However, in order to obtain low CO2 emissions when coal is used, the coal decarbonization must be implemented: in this case it is possible to attain a global efficiency of about 38%, a specific emission of 0.1117 kg/kWh and an increase of kWh cost of about 32%. Vice versa, in order to obtain low CO2 emissions when natural gas is used, the exhaust gas treatment must be implemented: in this case it is possible to attain a global efficiency of about 50.7%, a specific emission of 0.0391 kg/kWh and ail increase of kWh cost of about 15%. The clean use of coal seems to have good potential because it allows low energy penalizations (about 7.5 percentage points) and economic increases of about 32%. Because of the great availability, the homogeneous distribution and the low cost of this fuel, these results seem to be very interesting especially in the viewpoint of a transition towards the "hydrogen economy", based, at least in the medium term, oil fossil fuels.
International conference on energy sustainability
Jacksonville (USA)
2008
2.
ASME
Rilevanza internazionale
2008
Settore ING-IND/09 - SISTEMI PER L'ENERGIA E L'AMBIENTE
English
commercially ready technology; coproduction; electricity; hydrogen; coal
Intervento a convegno
Gambini, M., Vellini, M. (2008). CO2 emission abatement in CC-IGCC power plants: energy and economic comparisons. In ES2008: proceedings of the 2nd international conference on energy sustainability (pp.247-261). New York : ASME [10.1115/ES2008-54166].
Gambini, M; Vellini, M
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/35489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact