We report on a recent work on the extension to the case of fields carrying superselection charges of the method of scaling algebras, which has been introduced earlier as a means for analysing the short-distance behaviour of quantum field theories in the setting of the algebraic approach. This generalization is used to study the relation between the superselection structures of the underlying theory and the one of its scaling limit, and, in particular, to propose a physically motivated criterion for the preservation of superselection charges in the scaling limit. This allows the formulation of an intrinsic notion of charge confinement as proposed by D. Buchholz.
D'Antoni, C., Morsella, G., Verch, R. (2007). Scaling algebras for charge carrying quantum fields and superselection structure at short distances. In Prospects in Mathematical Physics (pp.31-43). PROVIDENCE : AMER MATHEMATICAL SOC.
Scaling algebras for charge carrying quantum fields and superselection structure at short distances
D'ANTONI, CLAUDIO;MORSELLA, GERARDO;
2007-01-01
Abstract
We report on a recent work on the extension to the case of fields carrying superselection charges of the method of scaling algebras, which has been introduced earlier as a means for analysing the short-distance behaviour of quantum field theories in the setting of the algebraic approach. This generalization is used to study the relation between the superselection structures of the underlying theory and the one of its scaling limit, and, in particular, to propose a physically motivated criterion for the preservation of superselection charges in the scaling limit. This allows the formulation of an intrinsic notion of charge confinement as proposed by D. Buchholz.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.