The interest in the Ge doped Sb–Te chalcogenide alloy is mainly related to phase change memory applications. In view of phase change device scaling and reduction of programming energy, Sb–Te nanowires (NWs) become an attractive option. In this work, in order to investigate their potential transferability to industrial implementation, the self-assembly of Sb2Te3 NWs and Ge–Sb–Te NWs with Ge content in the range of 1–13% (Ge doping) was studied by coupling the advantages of MOCVD and the Vapour–Liquid–Solid (VLS) mechanism. The results show the structural and compositional gradual changes occurring from pure Sb2Te3 NWs to the previously reported, stoichiometric Ge1Sb2Te4 NWs [[12] M. Longo et al., Nano Lett., 12 (2012) 1509]. The typical diameter of the obtained NWs resulted to be 50 nm, with lengths up to 3 μm. The typology of Au catalyst nanoislands influenced both the NW morphology and the Ge incorporation during the VLS self-assembly; the Ge metalorganic precursor partial pressure affected the NW morphology and their structure. Finally, TEM observations revealed that defect-free, monocrystalline Sb2Te3 and Ge-doped Sb–Te phase change NWs could be obtained.

Longo, M., Stoycheva, T., Fallica, R., Wiemer, C., Lazzarini, L., Rotunno, E. (2013). Au-catalyzed synthesis and characterisation of phase change Ge-doped Sb-Te nanowires by MOCVD. JOURNAL OF CRYSTAL GROWTH, 370, 323-327 [10.1016/j.jcrysgro.2012.09.021].

Au-catalyzed synthesis and characterisation of phase change Ge-doped Sb-Te nanowires by MOCVD

Longo, M.
;
2013-01-01

Abstract

The interest in the Ge doped Sb–Te chalcogenide alloy is mainly related to phase change memory applications. In view of phase change device scaling and reduction of programming energy, Sb–Te nanowires (NWs) become an attractive option. In this work, in order to investigate their potential transferability to industrial implementation, the self-assembly of Sb2Te3 NWs and Ge–Sb–Te NWs with Ge content in the range of 1–13% (Ge doping) was studied by coupling the advantages of MOCVD and the Vapour–Liquid–Solid (VLS) mechanism. The results show the structural and compositional gradual changes occurring from pure Sb2Te3 NWs to the previously reported, stoichiometric Ge1Sb2Te4 NWs [[12] M. Longo et al., Nano Lett., 12 (2012) 1509]. The typical diameter of the obtained NWs resulted to be 50 nm, with lengths up to 3 μm. The typology of Au catalyst nanoislands influenced both the NW morphology and the Ge incorporation during the VLS self-assembly; the Ge metalorganic precursor partial pressure affected the NW morphology and their structure. Finally, TEM observations revealed that defect-free, monocrystalline Sb2Te3 and Ge-doped Sb–Te phase change NWs could be obtained.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/03
English
Senza Impact Factor ISI
A1. Nanowires; A3. MOCVD; B1. Chalcogenides; B3. Non-volatile memories
Longo, M., Stoycheva, T., Fallica, R., Wiemer, C., Lazzarini, L., Rotunno, E. (2013). Au-catalyzed synthesis and characterisation of phase change Ge-doped Sb-Te nanowires by MOCVD. JOURNAL OF CRYSTAL GROWTH, 370, 323-327 [10.1016/j.jcrysgro.2012.09.021].
Longo, M; Stoycheva, T; Fallica, R; Wiemer, C; Lazzarini, L; Rotunno, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Au-catalyzed synthesis and characterisation of phase change Ge-doped Sb–Te nanowires by MOCVD.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 949.84 kB
Formato Adobe PDF
949.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/349209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact