The tight binding (TB) approach represents a good trade-off between accuracy and computational burden. For this reason, it is widely used for device simulations. However, a proper description of a physical system by means of TB requires an accurate parameterization of the Hamiltonian matrix elements (HME), that is usually done by fitting over suitable properties that can be measured or computed with first-principles approaches. We show that the particle swarm optimization algorithm is a powerful tool for the parameterization of the TB HME, using the density functional theory band dispersions of bulk reference materials as a target. We discuss the results obtained for bulk MAPbI(3) perovskite in its high temperature cubic phase.

Di Vito, A., Pecchia, A., der Maur, M., Di Carlo, A. (2020). Tight binding parameterization through particle swarm optimization algorithm. In 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (pp.113-114). 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/nusod49422.2020.9217665].

Tight binding parameterization through particle swarm optimization algorithm

Di Vito, A;Pecchia, A;Di Carlo, A
2020-01-01

Abstract

The tight binding (TB) approach represents a good trade-off between accuracy and computational burden. For this reason, it is widely used for device simulations. However, a proper description of a physical system by means of TB requires an accurate parameterization of the Hamiltonian matrix elements (HME), that is usually done by fitting over suitable properties that can be measured or computed with first-principles approaches. We show that the particle swarm optimization algorithm is a powerful tool for the parameterization of the TB HME, using the density functional theory band dispersions of bulk reference materials as a target. We discuss the results obtained for bulk MAPbI(3) perovskite in its high temperature cubic phase.
2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)
Turin, Italy
2020
Rilevanza internazionale
2020
Settore ING-INF/01
English
Intervento a convegno
Di Vito, A., Pecchia, A., der Maur, M., Di Carlo, A. (2020). Tight binding parameterization through particle swarm optimization algorithm. In 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (pp.113-114). 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/nusod49422.2020.9217665].
Di Vito, A; Pecchia, A; der Maur, M; Di Carlo, A
File in questo prodotto:
File Dimensione Formato  
12_NUSOD2020.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 727.03 kB
Formato Adobe PDF
727.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/345864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact