We are concerned with the analysis of a mean field type equation and its linearization, which is a nonlocal operator, for which we estimate the number of nodal domains for the radial eigenfunctions and the related uniqueness properties.

Bartolucci, D., Jevnikar, A., Wu, R. (2023). A Courant nodal domain theorem for linearized mean field type equations. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 22(9), 2744-2759 [10.3934/cpaa.2023085].

A Courant nodal domain theorem for linearized mean field type equations

Daniele Bartolucci;Aleks Jevnikar;
2023-01-01

Abstract

We are concerned with the analysis of a mean field type equation and its linearization, which is a nonlocal operator, for which we estimate the number of nodal domains for the radial eigenfunctions and the related uniqueness properties.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
English
Con Impact Factor ISI
Nodal domain theorem; radial eigenfunction; mean field type equations
Bartolucci, D., Jevnikar, A., Wu, R. (2023). A Courant nodal domain theorem for linearized mean field type equations. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 22(9), 2744-2759 [10.3934/cpaa.2023085].
Bartolucci, D; Jevnikar, A; Wu, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/345827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact