The problem of estimating constant parameters from a standard vector linear regression equation in the absence of sufficient excitation in the regressor is addressed. The first step to solve the problem consists in transforming this equation into a set of scalar ones using the well-known dynamic regressor extension and mixing technique. Then, a novel procedure to generate new scalar exciting regressors is proposed. The superior performance of a classical gradient estimator using this new regressor, instead of the original one, is illustrated with comprehensive simulations.

Bobtsov, A., Yi, B., Ortega, R., Astolfi, A. (2022). Generation of New Exciting Regressors for Consistent Online Estimation of Unknown Constant Parameters. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 67(9), 4746-4753 [10.1109/TAC.2022.3159568].

Generation of New Exciting Regressors for Consistent Online Estimation of Unknown Constant Parameters

Astolfi, A
2022-01-01

Abstract

The problem of estimating constant parameters from a standard vector linear regression equation in the absence of sufficient excitation in the regressor is addressed. The first step to solve the problem consists in transforming this equation into a set of scalar ones using the well-known dynamic regressor extension and mixing technique. Then, a novel procedure to generate new scalar exciting regressors is proposed. The superior performance of a classical gradient estimator using this new regressor, instead of the original one, is illustrated with comprehensive simulations.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/04
Settore IINF-04/A - Automatica
English
Estimation
Convergence
Parameter estimation
Observers
Mathematical models
Generators
Trajectory
Parameter estimation
persistent excitation
system identification
Bobtsov, A., Yi, B., Ortega, R., Astolfi, A. (2022). Generation of New Exciting Regressors for Consistent Online Estimation of Unknown Constant Parameters. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 67(9), 4746-4753 [10.1109/TAC.2022.3159568].
Bobtsov, A; Yi, B; Ortega, R; Astolfi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
IEEE CSS.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/338068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 16
social impact