The problem of the strong stabilization with infinite gain margin, with the additional requirement of a prescribed rate of convergence of the free responses, is addressed for linear time-invariant discrete-time multivariable plants in the case when unknown different scalar gains act either on the inputs or on the outputs. Necessary and sufficient conditions for the solvability of the problem by means of a stable linear periodic discrete-time output feedback dynamic controller are derived. Algorithmic procedures are given for designing the proposed periodic controllers.

Galeani, S., Grasselli, O.m., Menini, L. (2004). Strong stabilization with infinite multivariable gain margin through linear periodic control. INTERNATIONAL JOURNAL OF CONTROL, 75(5), 441-460 [10.1080/00207170410001669691].

Strong stabilization with infinite multivariable gain margin through linear periodic control

GALEANI, SERGIO;GRASSELLI, OSVALDO MARIA;MENINI, LAURA
2004-01-01

Abstract

The problem of the strong stabilization with infinite gain margin, with the additional requirement of a prescribed rate of convergence of the free responses, is addressed for linear time-invariant discrete-time multivariable plants in the case when unknown different scalar gains act either on the inputs or on the outputs. Necessary and sufficient conditions for the solvability of the problem by means of a stable linear periodic discrete-time output feedback dynamic controller are derived. Algorithmic procedures are given for designing the proposed periodic controllers.
2004
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/04 - AUTOMATICA
English
Con Impact Factor ISI
Periodic control; gain margin; strong stabilization
Galeani, S., Grasselli, O.m., Menini, L. (2004). Strong stabilization with infinite multivariable gain margin through linear periodic control. INTERNATIONAL JOURNAL OF CONTROL, 75(5), 441-460 [10.1080/00207170410001669691].
Galeani, S; Grasselli, Om; Menini, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/33514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact