This article presents an innovative runtime support for speculative parallel processing of discrete event simulation models on multi-core architectures, which exploits Hardware-Transactional-Memory (HTM) facilities for the purpose of state recoverability. In this proposal, the speculative updates on the state of the simulation model are executed as concurrent HTM-based transactions that are also in charge of detecting whether the update is consistent with the advancement of logical-time along model execution. Our proposal is fully transparent to the application code. Hence, our HTM-based run-time support can host conventionally developed discrete event models relying on the concept of event-handlers to be dispatched by an underlying simulation engine. Experimental data show that our proposal provides 75% to 92% of the ideal speedup on an Intel Haswell based platform (equipped with 4 physical cores and HTM support) for discrete event models with event granularity ranging between 2 and 12 microseconds. The data also show that these same models cannot be executed efficiently on top of a last generation parallel discrete event simulation platform employing software-based recoverability.

Santini, E., Ianni, M., Pellegrini, A., Quaglia, F. (2015). Hardware-Transactional-Memory Based Speculative Parallel Discrete Event Simulation of Very Fine Grain Models. In 2015 IEEE 22nd International Conference on High Performance Computing (HiPC) (pp.145-154). 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/HiPC.2015.45].

Hardware-Transactional-Memory Based Speculative Parallel Discrete Event Simulation of Very Fine Grain Models

Alessandro Pellegrini;Francesco Quaglia
2015-12-01

Abstract

This article presents an innovative runtime support for speculative parallel processing of discrete event simulation models on multi-core architectures, which exploits Hardware-Transactional-Memory (HTM) facilities for the purpose of state recoverability. In this proposal, the speculative updates on the state of the simulation model are executed as concurrent HTM-based transactions that are also in charge of detecting whether the update is consistent with the advancement of logical-time along model execution. Our proposal is fully transparent to the application code. Hence, our HTM-based run-time support can host conventionally developed discrete event models relying on the concept of event-handlers to be dispatched by an underlying simulation engine. Experimental data show that our proposal provides 75% to 92% of the ideal speedup on an Intel Haswell based platform (equipped with 4 physical cores and HTM support) for discrete event models with event granularity ranging between 2 and 12 microseconds. The data also show that these same models cannot be executed efficiently on top of a last generation parallel discrete event simulation platform employing software-based recoverability.
22nd International Conference on High Performance Computing
Bengaluru
2015
Rilevanza internazionale
dic-2015
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
English
state recoverability
optimistic PDES
Intervento a convegno
Santini, E., Ianni, M., Pellegrini, A., Quaglia, F. (2015). Hardware-Transactional-Memory Based Speculative Parallel Discrete Event Simulation of Very Fine Grain Models. In 2015 IEEE 22nd International Conference on High Performance Computing (HiPC) (pp.145-154). 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/HiPC.2015.45].
Santini, E; Ianni, M; Pellegrini, A; Quaglia, F
File in questo prodotto:
File Dimensione Formato  
San15.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 134.44 kB
Formato Adobe PDF
134.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/323510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact