The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.

Cirotti, C., Rizza, S., Giglio, P., Poerio, N., Allega, M., Claps, G., et al. (2021). Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO REPORTS, 22(1).

Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress

Cirotti, C;Rizza, S;Giglio, P;Poerio, N;Claps, G;Cecconi, F;Fraziano, M;Filomeni, G
2021-01-01

Abstract

The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/06 - ANATOMIA COMPARATA E CITOLOGIA
English
ATM
GSNOR
mitophagy
ROS
T cell
Cirotti, C., Rizza, S., Giglio, P., Poerio, N., Allega, M., Claps, G., et al. (2021). Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO REPORTS, 22(1).
Cirotti, C; Rizza, S; Giglio, P; Poerio, N; Allega, M; Claps, G; Pecorari, C; Lee, J; Benassi, B; Barila, D; Robert, C; Stamler, J; Cecconi, F; Fraziano, M; Paull, T; Filomeni, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/303780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact