In this paper we consider the problem(P lambda()) {-Delta u + V-lambda(x)u = (I-mu * vertical bar u vertical bar(2 mu*))vertical bar u vertical bar(2 mu*-2)u in R-N,u > 0 in R-N,where V-lambda = lambda + V-0 with lambda >= 0, V-0 is an element of L-N/2(R-N), I-mu = 1/vertical bar x vertical bar(mu) is the Riesz potential with 0 < mu < min{N, 4} and 2(mu)* = 2N-mu/N-2 with N >= 3. Under some smallness assumption on V-0 and lambda we prove the existence of two positive solutions of (P-lambda). In order to prove the main results, we used variational methods combined with degree theory.
Alves, C., Figueiredo, G., Molle, R. (2021). Multiple positive bound state solutions for a critical Choquard equation. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 41(10), 4887-4919 [10.3934/dcds.2021061].
Multiple positive bound state solutions for a critical Choquard equation
Molle, R
2021-01-01
Abstract
In this paper we consider the problem(P lambda()) {-Delta u + V-lambda(x)u = (I-mu * vertical bar u vertical bar(2 mu*))vertical bar u vertical bar(2 mu*-2)u in R-N,u > 0 in R-N,where V-lambda = lambda + V-0 with lambda >= 0, V-0 is an element of L-N/2(R-N), I-mu = 1/vertical bar x vertical bar(mu) is the Riesz potential with 0 < mu < min{N, 4} and 2(mu)* = 2N-mu/N-2 with N >= 3. Under some smallness assumption on V-0 and lambda we prove the existence of two positive solutions of (P-lambda). In order to prove the main results, we used variational methods combined with degree theory.File | Dimensione | Formato | |
---|---|---|---|
1812.04875v2.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
363.6 kB
Formato
Adobe PDF
|
363.6 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.