The aim of this paper is to study some modular contractions of the moduli space of stable pointed curves Mg,n . These new moduli spaces, which are modular compactifications of Mg,n, are related to the minimal model program for Mg,n and have been introduced by Codogni et al. (2018). We interpret them as log canonical models of adjoint divisors and we then describe the Shokurov decomposition of a region of boundary divisors on Mg,n .

Codogni, G., Tasin, L., Viviani, F. (2021). On some modular contractions of the moduli space of stable pointed curves. ALGEBRA & NUMBER THEORY, 15(5), 1245-1281 [10.2140/ant.2021.15.1245].

On some modular contractions of the moduli space of stable pointed curves

Codogni, Giulio;Viviani, Filippo
2021-01-01

Abstract

The aim of this paper is to study some modular contractions of the moduli space of stable pointed curves Mg,n . These new moduli spaces, which are modular compactifications of Mg,n, are related to the minimal model program for Mg,n and have been introduced by Codogni et al. (2018). We interpret them as log canonical models of adjoint divisors and we then describe the Shokurov decomposition of a region of boundary divisors on Mg,n .
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Birational contractions; Modular compactifications; Moduli of curves
Codogni, G., Tasin, L., Viviani, F. (2021). On some modular contractions of the moduli space of stable pointed curves. ALGEBRA & NUMBER THEORY, 15(5), 1245-1281 [10.2140/ant.2021.15.1245].
Codogni, G; Tasin, L; Viviani, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ModularContractions.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
On some modular contraction of the moduli spaces of stable pointed curves.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/278792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact