NASA anomaly databases are rich resources of software failure data in the field. These data are often captured in natural language that is not appropriate for trending or statistical analyses. This fast abstract describes a feasibility study of applying 60 natural language processing techniques for automatically classifying anomaly data to enable trend analyses. © 2013 IEEE.

Falessi, D., Layman, L. (2013). Automated classification of NASA anomalies using natural language processing techniques. In 2013 IEEE International Symposium on Software Reliability Engineering Workshops, ISSREW 2013 (pp.5-6). 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/ISSREW.2013.6688849].

Automated classification of NASA anomalies using natural language processing techniques

Falessi D.;
2013-01-01

Abstract

NASA anomaly databases are rich resources of software failure data in the field. These data are often captured in natural language that is not appropriate for trending or statistical analyses. This fast abstract describes a feasibility study of applying 60 natural language processing techniques for automatically classifying anomaly data to enable trend analyses. © 2013 IEEE.
2013 24th IEEE International Symposium on Software Reliability Engineering Workshops, ISSREW 2013
Pasadena, CA, usa
2013
Rilevanza internazionale
2013
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
English
natural language processing
NLP
software failure
Intervento a convegno
Falessi, D., Layman, L. (2013). Automated classification of NASA anomalies using natural language processing techniques. In 2013 IEEE International Symposium on Software Reliability Engineering Workshops, ISSREW 2013 (pp.5-6). 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/ISSREW.2013.6688849].
Falessi, D; Layman, L
File in questo prodotto:
File Dimensione Formato  
06688849.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 658.54 kB
Formato Adobe PDF
658.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/273363
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact