Annular shaped pile groups are a very common foundation layout for onshore wind turbines and other slender structures. In this study, their performance under vertical loads of moderate to high eccentricity, including moment rotation response and bearing capacity, was investigated by centrifuge testing on small scale physical models embedded in kaolin clay. To identify experimentally the capacity of the examined pile groups under different load paths, the model foundations were loaded monotonically until a clear collapse mechanism was achieved. The testing procedure and the proposed interpretation methodology can be easily adapted to load paths or pile layouts other than those considered in the current study. The experimental data can be adopted as a useful benchmark for mathematical models aimed at predicting the response of pile groups to complex load paths. The results of this testing program can also be used to assess the degree of conservatism of current methods adopted by industry for the design of piled foundations subjected to eccentric loads.
de Sanctis, L., Di Laora, R., Garala, T.k., Madabhushi, S., Viggiani, G., Fargnoli, P. (2021). Centrifuge modelling of the behaviour of pile groups under vertical eccentric load. SOILS AND FOUNDATIONS [10.1016/j.sandf.2021.01.006].
Centrifuge modelling of the behaviour of pile groups under vertical eccentric load
Viggiani G.;
2021-02-13
Abstract
Annular shaped pile groups are a very common foundation layout for onshore wind turbines and other slender structures. In this study, their performance under vertical loads of moderate to high eccentricity, including moment rotation response and bearing capacity, was investigated by centrifuge testing on small scale physical models embedded in kaolin clay. To identify experimentally the capacity of the examined pile groups under different load paths, the model foundations were loaded monotonically until a clear collapse mechanism was achieved. The testing procedure and the proposed interpretation methodology can be easily adapted to load paths or pile layouts other than those considered in the current study. The experimental data can be adopted as a useful benchmark for mathematical models aimed at predicting the response of pile groups to complex load paths. The results of this testing program can also be used to assess the degree of conservatism of current methods adopted by industry for the design of piled foundations subjected to eccentric loads.File | Dimensione | Formato | |
---|---|---|---|
SANDF-D-20-00189_R1_manuscript.pdf
accesso aperto
Descrizione: accepted manuscript
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.02 MB
Formato
Adobe PDF
|
2.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.