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Abstract 

Annular shaped pile groups are a very common foundation layout for onshore wind turbines 

and other slender structures. In this study, their performance under vertical loads of moderate 

to high eccentricity, including moment rotation response and bearing capacity, was 

investigated by centrifuge testing on small scale physical models embedded in kaolin clay. To 

identify experimentally the capacity of the examined pile groups under different load paths, 

the model foundations were loaded monotonically until a clear collapse mechanism was 

achieved. The testing procedure and the proposed interpretation methodology can be easily 

adapted to load paths or pile layouts other than those considered in the current study. The 

experimental data can be adopted as a useful benchmark for mathematical models aimed at 

predicting the response of pile groups to complex load paths. The results of this testing 

program can also be used to assess the degree of conservatism of current methods adopted by 

industry for the design of piled foundations subjected to eccentric loads.  

Manuscript
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1. Introduction  

The large demand of tall wind turbines and earthquake resistant structures has led to new 

research in the field of foundations subjected to complex actions, such as dynamic and cyclic 

multi-component loads. This has presented a formidable challenge to geotechnical 

engineering, as current design methods adopted by the industry are often unable to ensure 

stringent performance requirements with a reasonable level of conservatism. In particular, 

innovative design solutions for the foundations of wind turbines are required to accommodate 

the increasing demand of renewable energy. In 2015, the cumulative installed wind capacity 

across the world has increased by 17% relative to the preceding year (GWEC 2015). In the 

USA, for example, the consumption of energy in 2014 was only 1.24% higher than that in the 

preceding year, while the use of renewable energy increased by 10.8% (Shrestha 2015). 

According to Liebreich (2017), the maximum height of wind turbines has grown from 40 to 

150 m in the past 30 years, to take advantage of higher wind speed and reduced turbulence at 

higher altitudes. It is highly probable that the height of wind turbines will increase further in 

the next decade. As a matter of fact, tall wind turbines are the most convenient choice for the 

production of wind energy. Since the loads transmitted by a tall tower under extreme wind 

conditions are remarkably eccentric, the dead load of any shallow foundation has to be large 

enough to avoid bearing capacity failure or the occurrence of overturning. This usually results 

into very substantial circular rafts with extremely large thickness and diameter, also referred 

to in the literature as ‘gravity’ foundations. In some cases, the dimensions of the required 

gravity foundation may be above the upper limit of what is possible in practice. In the case of 

onshore wind turbines, the most frequent alternative is represented by a piled foundation 

(Ravichandran et al. 2018), even if other options are available, e.g., monopile or caisson 

foundations, or soil treatment by gravel or grouted columns.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

3 

 

This work focuses on the behaviour of pile groups under moderate to high eccentric 

vertical loads. Current design methods, see e.g., AASHTO Bridge Design Specification 

(2012), identify the capacity of a pile group as the eccentric vertical load corresponding to the 

achievement of the axial capacity of the outermost pile (in compression or in tension). 

However, this does not correspond to failure of the foundation but rather to the onset of 

yielding, as the pile group is still capable of carrying further external loads, exploiting the 

ductility reserves of the system.  Past research work has targeted the evaluation of the collapse 

domain of pile groups from tests on reduced scale models of groups of piles embedded in 

sand (Kishida & Meyerhof 1965, Meyerhof & Ranjan 1973, Meyerhof et al. 1983) and 

saturated clay (Saffery & Tate 1961, Meyerhof 1981, Meyerhof & Yalcin 1984). As a result, 

semi-empirical relationships linking the axial and the moment capacity of pile groups are 

available (Meyerhof et al. 1983), but their application in practice is not straightforward due to 

the inherent difficulty in the evaluation of the moment capacity under zero axial load. Di 

Laora et al. (2019) have recently proposed a novel, exact solution for the interaction diagrams 

of pile groups, based on the theorems of limit analysis. This allows to evaluate the collapse 

domain in the (axial load Q, moment M) plane from the axial capacities of the single pile in 

compression and tension. The predictive capabilities of this approach, however, have not yet 

been proven experimentally.  

Despite the considerable research effort on the topic, the failure mechanism of a pile group 

under vertical eccentric load is not yet well understood. For instance, the kinematics of the 

failure mechanism and the evolution of the load distribution among the piles, when the pile 

group is subjected to load paths with constant eccentricity, e (=M/Q), constant axial load, or 

any other path are still unclear, as most of the existing work addressed solely the definition of 

the collapse domain.  
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Finally, pile-to-pile interaction mechanisms have been traditionally investigated under the 

assumption of positive (compressive) axial load on piles. The early studies on this subject 

date back to Poulos (1968), Butterfield & Banerjee (1971) and Banerjee & Driscoll (1976). 

Since then, a number of comprehensive works have been published, including well-

documented case history of instrumented piled rafts (Clancy & Randolph 1993, Russo & 

Viggiani 1998, de Sanctis & Russo 2008). As outlined by Viggiani et al. (2012), this research 

effort has led to satisfactory procedures of analysis for the prediction of settlements of piled 

foundations. However, there is a dearth of experimental observations on the rotation of pile 

groups for load distributions involving negative (tension) axial loads, in which pile-to-pile 

interaction under tensile axial loads may play a significant role.  

In the light of the above, the aims of this research are twofold: (i) to define a standard 

procedure to evaluate the moment rotation response of small pile groups under vertical and 

eccentric load using centrifuge testing; (ii) to provide well-documented experimental evidence 

on the critical issue of the bearing capacity of piled foundations under loads with moderate to 

high eccentricity, involving tension load in piles. These data can be usefully adopted as a 

benchmark for mathematical models aimed at predicting the response of pile groups to 

different load paths in the (Q, M) plane.  

 

2. Centrifuge modelling of small pile groups   

The experimental program was carried out at the Schofield Centre of the University of 

Cambridge. Two sets of centrifuge tests were performed at an increased gravity of 50g on 

annular shaped pile groups consisting of 8 aluminium piles and isolated single piles 

embedded in kaolin clay. Figure 1 illustrates the arrangement of the model foundations in the 

cylindrical container adopted for the purpose of this study. The first set of experiments, or Set 

A (Figure 1a) included a loading test in compression and one in tension on isolated piles, a 
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loading test on the annular group under vertical centred load, and a loading test under highly 

eccentric vertical load. The second set of experiments, or set B (Figure 1b) included two 

loading tests on isolated piles, once again one in compression and one in tension, a loading 

test on the pile group under a positive (compressive) vertical load with small eccentricity and, 

finally, a loading test under a negative (tensile) vertical load with small eccentricity.  

All model piles were closed-ended hollow cylinders, with a thickness of 1 mm (50 mm at 

prototype scale), an outer diameter of 10 mm (0.5 m at prototype scale), and a length of 

280 mm (14 m at prototype scale). They were embedded in the kaolin clay layer for 240 mm, 

with the exception of the isolated piles for tests in tension, whose embedded length was 

250 mm, so as to make the shaft capacity in tension comparable to that in compression even 

under large uplift displacements. Isolated piles were connected to square rafts with a width of 

40 mm and a thickness of 10 mm. The 8 piles in the annular groups were always arranged 

according to the same layout, equally spaced and with their centres along a circle with a 

diameter of 120 mm. They were connected with spherical hinges to an aluminium circular raft 

with a diameter of 138 mm, which was clear of the soil (Figure 2). The dimensions in Figures 

1 and 2 are at model scale and the values in parentheses represent the prototype dimensions. A 

skirted connecting raft was adopted to minimize the axial load carried by piles before the 

application of the external load, as detailed in the following. The vertical load was applied 

under constant eccentricity by means of a cantilever beam.  

 

2.1 Models preparation and experimental setup 

The model foundations were inserted in the layer of clay within a cylindrical container with a 

diameter of 850 mm (42.5 m at prototype scale) and a height of 400 mm (20 m at prototype 

scale), as shown in Figures 1 and 2. The clay was underlain by a thin layer of dense Fraction 
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B Leighton Buzzard sand (mean particle size, D50 = 0.80 mm), to allow drainage at the 

bottom of the model during the consolidation stage. A porous Vyon plastic sheet and a filter 

paper were also placed on top of the sand to avoid the passage of clay through the drainage 

boundary. The clay layer was prepared from a slurry obtained mixing Speswhite Kaolin clay 

powder and de-aired water at nearly twice the liquid limit.  The properties of Kaolin clay, 

extensively used in Cambridge for many experimental campaigns, are listed in Table 1 (Lau, 

2015). The clay layer was consolidated at 1g by applying a vertical stress of 70 kPa at the top 

and a suction of -70 kPa at the base, as shown schematically in Figure 3. Initially, the 

cylindrical tub containing the clay slurry was placed under a computer-controlled hydraulic 

press to consolidate under vertical stress and only at a later stage was a suction applied at the 

bottom to further consolidate the clay slurry. The purpose and importance of clay 

consolidation using a combination of vertical stress and suction-induced seepage are 

explained in detail by Garala & Madabhushi (2019).  Figure 4(a) shows the vertical effective 

stress profile at the end of the 1g consolidation stage, before removal from the hydraulic 

press, using the normalized depth, z/H, in which H is the final height of the clay layer.  

All aluminium piles were coated with Houston sand (D50 = 0.356 mm), to simulate the contact 

of cast-in-situ reinforced concrete piles and were installed by pushing them in the clay layer at 

1g. Since the piles are connected to the cap through spherical hinges, there was a risk that 

some of the piles may deviate from the vertical as the pile group was pushed into the clay. 

Therefore, the piles were driven using a template square raft, so that they could not rotate 

during installation (see Figure 5). Before pile installation, the state of effective stress in the 

clay layer results from the combination of the load applied by the hydraulic press and the 

suction applied at the base, which is maintained due to suction in the clay. Installation will 

generate changes of effective stress and positive excess pore water pressures locally around 

the pile, which are not entirely straightforward to determine.  However, the scope of the work 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

7 

 

was not to assess the effect of pile installation on the performance of isolated piles and pile 

groups, but rather to examine the response of pile groups under combined axial and moment 

loading to failure. Therefore, the response of isolated piles under tension and compression 

was determined experimentally to provide a term for comparison which includes installation 

effects.   

The centrifuge models were instrumented to monitor soil and foundation response during 

the tests, as shown in the plan view of Figure 6. The settlements of the foundations were 

measured using vertically mounted Linear Variable Differential Transformers (LVDTs); the 

rotations of the rafts connecting the piles were measured using uniaxial Micro-Electro-

Mechanical-Systems (MEMS) accelerometers; the axial loads of half of the piles were 

measured using miniaturised Load Cells (LCs) positioned immediately below the spherical 

hinges. Pore water pressures at different locations in the soil mass were recorded by means of 

miniature Pore Pressure Transducers (PPTs).  

One LVDT was used to measure the vertical displacement of each raft, while the rotation 

of the rafts was measured using MEMS accelerometers. In the first set of experiments (Set A), 

the external load applied on the pile groups was evaluated indirectly from the available loads 

measured on individual piles, as detailed in the following. In the second set of experiments 

(Set B), load cells were mounted on the driving actuators, and, therefore, a direct 

measurement of the external load on the pile groups was available. The proposed layout has 

advantages over alternative, more sophisticated options:  

- spherical hinges allow a direct and straightforward interpretation of the load distribution 

among piles, provided that the external moment cannot be but equilibrated by axial loads 

on piles;  

- the circular raft connecting the piles can be idealized as a rigid body and, hence, very 

limited instrumentation is sufficient to evaluate the displacement of any pile during the 
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entire loading history. These may include either two LVDTs measuring the vertical 

displacement of the raft at two points or, as in the present case, only one LVDT and a small 

number of MEMS accelerometers measuring the cap rotation.  

 

2.2 Re-consolidation in the centrifuge and testing procedure  

After removing the cylindrical container from the hydraulic press and the vacuum pump, the 

total vertical stress at the top of the clay layer drops to zero, while the vertical effective stress 

within the clay body remains unchanged, due to the development of negative excess pore 

water pressures.  The required centrifuge acceleration of 50g was reached in 10g increments. 

The expected effective vertical stress profile at the end of the re-consolidation stage is plotted 

in Figure 4a as a dashed line. The measurements recorded by the PPTs within the soil mass 

indicated that the excess pore water pressures induced by the application of the increased 

gravity in the centrifuge did not dissipate completely.  The profile of vertical effective stress 

at the end of reconsolidation must therefore have been somewhere between the lines labelled 

‘after 1g consolidation’ and ‘full 50g consolidation’, and can be computed using the classic 

solutions by Terzaghi (1943) for any given value of the degree of consolidation, U. 

Specifically, the profile of vertical effective stress can be estimated by combining the 

solutions for a rectangular shaped and a triangular shaped initial excess pore water pressure 

profiles dissipating only towards the base of the clay layer, because its upper surface behaves 

like an impermeable boundary. As an example, Figure 4a shows the profile of vertical 

effective stress corresponding to a degree of consolidation U = 70%. At the bottom of the clay 

layer, the vertical effective stress is equal to that expected at the end of consolidation, while 

the vertical effective stress at the top of the clay layer is intermediate between zero and the 

unit load applied by the hydraulic press.  Figure 4(b) shows the profiles of undrained shear 
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strength, su, obtained from two Cone Penetration Tests (CPTs) carried out with a miniature 

CPT device, with a diameter of 6.35 mm and a 60° cone tip. CPT 1 (set A) was carried out at 

1g after the swing down stage, whereas CPT 2 (Set B) was performed in flight after re-

consolidation of the clay. The cone tip resistance (qc) was converted into undrained shear 

strength, su, using the following equation:  

0c v
u

k

q
s

N





 (1) 

where σv0 is the total overburden stress and Nk is the cone factor ranging from 8 to 12 for 

smooth cones (Teh and Houlsby 1991). An average Nk of 10 is used in this study. The 

theoretical profile of su determined from critical state theory (Roscoe et al. 1958) using the 

parameters in Table 1 and the vertical effective stress profile in Figure 4(a), corresponding to 

U = 70%, is in very good agreement with the experimental profile of undrained shear strength 

obtained from CPT 2, but for very shallow depths where there is a small effect of surface 

drying.  The above theoretical solution will be therefore taken as the reference profile for the 

interpretation of the experiments under examination. 

A crucial point of the experimental procedure is the application of the load history to the 

model foundations.  In all cases, the external load was applied under displacement control, by 

setting the displacement rate of the driving actuator at 1 mm/s. The displacements imposed by 

the actuators were large enough to allow a clear identification of the collapse load for all the 

examined models. The external load was applied on the end of the cantilever beam attached to 

the cap, through a half ball bearing, so that it could be idealized as a point load. The external 

load applied under displacement control has constant eccentricity and, hence, the direction of 

the load path in the (Q, M) plane is known a-priori; this allows to identify the moment load 

corresponding to the collapse of the group.   
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Figure 7 shows the initial configuration of the foundation model subjected to positive 

(compressive) vertical load with high eccentricity (Set A). It is easy to distinguish some 

important details in this figure, such as the cantilever beam, the half ball bearing for the 

application of the point load, the pile layout, the load cells on some of the piles, and the 

miniature CPT. Figure 8 shows the final configuration achieved for the pile group tested in 

tension under small eccentricity (Set B). As mentioned before, in this case, a load cell is 

mounted on the driving actuator, to measure directly the applied vertical load, and the raft is 

lifted by a square ring attached to the load cell and acting on a spherical device positioned on 

the lower face of the cantilever beam.  

 

3. Experimental results 

 

Results from the miniature CPTs were discussed before. The focus is now set on the load-

settlement response of the model foundations. Based on previous experience, a sampling 

frequency of 5 Hz is sufficient for an accurate representation of monitoring data.  

Table 2 provides the masses of the isolated piles, the pile groups and the circular rafts at 

model scale. The masses reported in the table are those of sand coated piles. The mass of the 

raft includes the contribution of the cantilever beam for the application of the eccentric load.  

As shown in Figure 6, the pile groups subjected to eccentric load were equipped with 

MEMS accelerometers. Two of these (M13 and M14) were positioned with their sensitive 

axis parallel to soil surface, while all the remaining MEMS accelerometers had their sensitive 

axis oriented along the vertical direction. In this case, the rotation at any instant of time can be 

expressed as:  

 
 

0

arccos
a t

t
a

   (2) 
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where a(t) is the acceleration recorded by the MEMS accelerometer at any time and a0 the 

acceleration before the application of the external load. On the other hand, for the two 

horizontally oriented MEMS accelerometers, the rotation is evaluated as :  

 
  0arcsin -arcsin

sin sin

a t a
t

N N


 
  (3) 

in which  is the angle in the horizontal plane between the sensitive axis of the MEMS 

accelerometer and the conjunction line between piles 3 and 7 (see Figure 6), and N is the 

current ratio between the acceleration in the model and the earth gravity acceleration. The 

acceleration field within the centrifuge model varies linearly with the distance r from the 

centre of rotation as shown in eq. (4) (Madabhushi, 2014).  

2Ng r   (4) 

in which  is the angular speed of the centrifuge and Ng is the centrifuge acceleration. As an 

example, Figure 9 illustrates the time history of the average value of the rotations recorded by 

MEMS accelerometer glued on the cap of pile group A2 during the test. Finally, the 

centrifuge acceleration ‘Ng’ values at the elevation of the rafts connecting the piles are fully 

consistent with accelerations recorded by the MEMS accelerometers, as expected.   

All data will be presented at the prototype scale in the following.  

 

3.1 Isolated single piles   

Figure 10 illustrates the load settlement curves from loading tests in compression and 

tension on isolated piles. The results from the two loading tests in compression are in 

relatively good agreement. The difference between the peak values of the applied external 

load is less than 10%, with the isolated pile of set B exhibiting a slightly larger resistance. For 

piles in tension, the agreement between the results from the two tests is still satisfactory, even 

if the difference between the two peak values of the external load in this case is larger, about 
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15%. This can be attributed to the variability of the shaft capacity of piles coated with sand; as 

the capacity in compression includes also end bearing capacity, the behaviour in compression 

is less affected by the variability of the shaft capacity.  While piles in compression exhibit 

minor softening, the tension capacity of isolated piles reduces significantly in the post-peak 

stage, which further confirms the larger role played by the shaft resistance on the overall 

capacity of the pile. 

 For all tested pile foundations and irrespective of whether the pile was tested in 

compression or extension, the vertical displacement at which the axial capacity is mobilized is 

about 10% of the diameter of the pile. This value is in agreement with that suggested by 

Fleming et al. (2008) and Viggiani et al. (2012) for piles in compression.  However, about the 

same value of vertical displacement, i.e. 50 mm, is needed to mobilize the shaft capacity in 

tension. As outlined by Viggiani et al. (2012), the displacement needed to mobilize the 

maximum shaft capacity in compression is almost independent on the pile diameter and equal 

to few tens of millimetres (say 20 mm). This discrepancy is not surprising. In fact, as the 

initial shear stress on the shaft are opposite to those occurring when the capacity in tension is 

mobilized, the absolute upward displacement needed to achieve the failure load in tension 

cannot be but much greater than the downward displacement mobilizing the shaft capacity in 

compression.  

 

3.2 Pile Groups 

For pile group A1, subjected to centred vertical load, the driving actuator was not equipped 

with a load cell, so the external load acting on the group was not measured directly. The 

external load is equilibrated by the axial loads on individual piles, but only half of the piles 

belonging to the group were fitted with load cells (see Figure 6). It is reasonable to assume 
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that the load distribution in the piles would be symmetric about the line indicated in Figure 6, 

and, therefore, the total load on the pile group at any time can be computed as:  

  2 iQ t Q   (5) 

where Qi is the load acting on ith instrumented pile.  

Figure 11(a) illustrates the load settlement response of the piles instrumented with LCs. 

The capacities of the individual piles are all very similar, with maximum recorded loads 

ranging between 229 kN and 287 kN. However, while piles No. 4, 6, and 8 reached their 

capacity at an axial displacement of about 36 mm, or 7.2% of the diameter of the pile, and 

then exhibited softening, pile No. 2 reached capacity at a larger displacement, of the order of 

20% of the diameter of the pile, or 100 mm. The compliant behaviour of pile No. 2 testifies to 

slackness in the system, including the screw connection between the load cell and the pile.  

In order to take into account the variability of axial load on piles, the results from all four 

instrumented piles were used to compute the average and standard deviation of the axial loads 

carried by the piles at each given vertical displacement. For instance, the average and standard 

deviation of the recorded loads on instrumented piles at a displacement of 0.04 m, 

corresponding to the peak loads of piles 4, 6 and 8,  are  = 235 kN and  = 46 kN 

respectively, so that the coefficient of variation (CoV) is about 0.2. Figure 11 (b) shows the 

total load carried by the pile group (thick line) together with the curves corresponding to plus 

or minus one standard deviation. The total load carried by the group and the standard 

deviation are computed as eight times the average load and standard deviation on single piles, 

respectively. The sum of the axial loads recorded by all the load cells remains almost constant 

for displacements larger than 0.04 m.  

For pile group A2, subjected to eccentric load, even if the distribution of load is taken to be 

symmetrical with respect to the plane containing the external moment load, it is not possible 

to know the axial loads on piles No. 4 and 2 (or, equivalently No. 6 and 8), not fitted with 
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load cells (see Figure 6). The applied total external load and moment are also unknown 

quantities, even if they have to satisfy the following relationship:  

M Qe  (6) 

where e is the eccentricity of the point load, equal to 7.25 m at prototype scale. Because there 

are 4 unknown quantities and three equations, namely moment and force equilibrium and 

eq. (6), the problem is indeterminate. In the interpretation of the results, we assumed that:  

       4 5 6 5   [ ]Q t Q t Q t Q t   (7) 

This is reasonable because the alignment of piles 4-6 is very close to pile 5 and all these 

piles are subjected to (positive) compression loads. The indeterminate quantities reduce 

therefore to Q2 (or Q8), Q and M.  Figure 12 shows the load-rotation response of the pile 

group computed under the assumption in eq. (7) together with the load settlement curves of 

the instrumented individual piles. Because the external load is applied under constant 

eccentricity, the quantity on the y-axis of Figure 12 is also representative of the applied 

external moment M, see eq. (6). This is plotted against R, where R is the radius of the circle 

through the centres of the piles, to obtain a nominal displacement comparable to the 

displacements of individual piles. The settlement of any pile belonging to the group was 

evaluated by the displacement recorded by the LVDT mounted on the cap, w0, and the 

average value of the rotations recorded by the MEMS, θ:  

 0 0i iw w x x    (9) 

where xi and x0 are the abscissas of the i-th pile and of the LVDT.  In this case, the rotations 

recorded by all the MEMS were very similar and their average final value matched exactly the 

rotation measured manually using a tilting device at the end of the test. Piles 3 and 7 exhibit 

practically the same response, giving confidence that the assumption about the plane of 

symmetry along piles 1-5 is appropriate in this case. All piles under compression mobilized 
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their capacity at a settlement of about 10% of the pile diameter. The peak compression load 

falls in a quite narrow band (219 kN to 278 kN), while the maximum value of the tension load 

on pile 1 is -465 kN. Overall, the moment-rotation response exhibits significant softening, as 

the moment capacity reduces by 25% after the achievement of the peak value.  

Pile group B1 was subjected to compression load with small eccentricity. As mentioned 

before, the driving actuators of the pile groups in Set B were fitted with load cells, so there is 

no need to evaluate the time history of the external load by summing the axial loads on 

individual piles. However, the sum of the axial loads on individual piles can be compared to 

the total load measured at the actuator to check the assumptions on the load distribution in the 

piles. As before, assuming a plane of symmetry along piles 1-5, the unknown quantities 

reduce to the external load and the axial load on pile 2 (or equivalently pile 8, see Fig. 6); 

these can be computed by overall force and moment equilibrium. Figure 13b shows the total 

load obtained using this procedure and the total load measured by the load cell mounted on 

the actuator as a function of rotation. The agreement between the two plots is generally very 

good, increasing the confidence on the assumption of symmetry for the distribution of axial 

loads on piles. The peak of the two curves, point (a), takes place at the same time, even if the 

two peak values differ by about 15%. This difference is fully compatible with the variability 

in axial capacity measured for group A1 subjected to centred load, see Figure 11b. The 

difference between the two plots at very large rotations, between points (b) and (c) is due to 

the load cell on the actuator coming into contact with the cantilever beam used to apply the 

eccentric load. Also shown in Figure 13a are the load displacement plots for the individual 

piles within the group. While the loads recorded by the individual load cells provide reliable 

measurements of the capacity of the piles, in this case the rotations recorded by the MEMS 

were very erratic. It follows that the axial displacements of individual piles were problematic 

to compute using Equation (9), which resulted in unreliable load-settlement curves.  The plots 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

16 

 

for piles 5 and 6, in compression, are very similar and relatively convincing whereas the plots 

for pile 7 in compression and pile 1 in tension are very irregular and difficult to interpret.   

Figure 14 shows the experimental data from the test on pile group B2, subjected to a 

tensile load with a small eccentricity. In this test, pile 1 is loaded in compression (positive) 

while all the remaining piles are subjected to tensile (negative) loads. As for pile group B1, 

the rotations recorded by the MEMS were very erratic rendering the computed displacements 

of individual piles unreliable and, therefore, the interpretation of their load-settlement 

response problematic, even if the loads recorded by individual load cells permitted to measure 

the capacities of individual piles.  Figure 14b compares the external load computed from the 

individual loads on piles using the symmetry criterion with that recorded by the load cell 

mounted on the actuator. The agreement between the two curves is extremely good until a 

critical value of the cap rotation, at point (b), at which collapse has already occurred and the 

square ring mounted on the load cell to pull the group comes in contact with the cantilever 

beam.   

 

4. Interpretation of loading tests on foundation models 

4.1 Isolated piles 

The axial capacity of the isolated piles is determined from the plots in Figure 10. The 

capacity of the isolated pile in compression can be computed as:  

maxuN Q W   (10) 

where Qmax is the peak value of the external load and W is the weight of the capped pile, 

including the small square raft. The capacity in tension is instead calculated as:  

minuS Q W    (11) 

where Qmin is the minimum (negative) value of the applied load.  
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Table 3 summarizes the axial capacities derived from loading tests on isolated piles for 

Sets A and B. Historically, the shaft friction around a pile shaft has been estimated in terms of 

the su, as shown in eq. (12) (Tomlinson 1957, Fleming et al. 2008).  

lim us s   (12) 

where  is an empirical coefficient, also referred to as ‘adhesion’, depending not only on the 

shear strength of soil, but also on its past stress history and overconsolidation ratio (Randolph 

& Wroth 1981). This coefficient can be easily back-figured from the tension capacity of the 

pile and the theoretical profile of undrained shear strength in Figure 4; which is 0.64 for Set A 

and 0.49 for Set B, as an average. The former value is in agreement with the recommendation 

of Viggiani (1993) for replacement piles in clay with undrained shear strength lower than 25 

kPa ( = 0.7), while the latter value is very close to the one suggested by O’Neill & Reese 

(1999) for replacement piles and su ≤ 150 kPa ( = 0.55).  

Because the load displacement curves of individual piles are nonlinear, a problem arises 

for the definition of their axial stiffness. In the following, the axial stiffness is referred to as 

the secant value corresponding to a displacement of 2% of the pile diameter, or 10 mm, which 

is still significantly smaller than the displacement corresponding to the attainment of the axial 

capacity, or about 10% of the pile diameter.  Table 3 summarises the computed axial stiffness 

of the isolated piles.  

 

4.2 Pile groups 

For pile groups A1, A2 and B1, the ultimate axial load is evaluated as:  

maxu piles capQ Q W W    (13) 

where Qmax is the first peak of the compression load, Wpiles is the weight of the piles and Wcap 

is the weight of the raft connecting the piles. This last quantity includes the contribution of the 
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cantilever beam for pile groups A2 and B1. On the other hand, for pile group B2, the tension 

capacity is calculated as:    

minu piles capQ Q W W    (14) 

where Qmin is the first (negative) peak achieved during the test. As outlined before, the gravity 

field in the centrifuge model varies linearly with the distance from the centre of rotation, 

according to eq. (4). As a result, the value of acceleration (Ng) at the elevation of the cap is 

smaller than the reference acceleration of 50g. While the weight of piles was computed by 

assuming an increased gravity of 50g, the weight of the circular raft was calculated by taking 

the exact value of the scale factor N corresponding to the cap elevation in the centrifuge 

model.  The moment capacity of a pile group is defined as the external moment applied to the 

foundation model corresponding to Qu. For pile group A1, subjected to centred load, the 

moment capacity is obviously zero. By contrast, for pile groups A2 and B1, the ultimate 

moment is evaluated through the following equation:   

0 max 0 maxu beamM M Q e W e Q e        (15) 

in which M0 is the moment generated by the weight of the cantilever beam, e0 is the 

eccentricity of Wbeam and e is the eccentricity of the external load. At the same time, for the 

pile group subjected to tension, the moment capacity is computed as:  

0 min 0 minu beamM M Q e W e Q e        (16) 

where, once again, Qmin is a negative quantity.  

The definition of the capacity of the group required careful inspection of the load 

displacement plots from individual piles as detailed in the following. For the pile group under 

centred load only, test A1, we take Qmax as the load corresponding to time at which the axial 

capacity of piles 4, 6, and 8 is fully mobilized. Such value does not correspond to the first 

peak of the loading history, but it is clearly associated to the occurrence of collapse, as shown 
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in Figure 15a. Noticeably, this value corresponds to the point of maximum curvature of the 

load settlement plot in Figure 11b. As an alternative, the collapse may be taken at time 

corresponding to the first local maximum of the entire load history. In case of pile group A2, 

the first local maximum of the entire load history takes place when the axial capacity of 

outermost pile No. 5 has been already mobilized, as it can be argued from Figure 15b. At the 

same instant, the opposite outermost pile has not yet mobilized its tension capacity. For pile 

group B1, the foundation attains the first local maximum almost simultaneously with the 

mobilization of the axial capacity in compression of piles 5, 6 and 7; at the same instant time, 

pile 1 under tension load has not achieved the tension capacity, as per pile group A1, see 

Figure 16a. Finally, for pile group B2, the instant time at which the collapse occurs, the 

outermost pile in tension (No. 5) has already mobilized its tension capacity (Figure 16b).  

The ultimate coordinates (Qu, Mu) of the pile groups tested in the centrifuge are 

summarised in Table 4. The load paths followed in the centrifuge are also represented in 

Figure 17 for all the model foundations. Noticeably, the initial moment due to the cantilever 

beam is about 10% of the ultimate moment for pile group A2, while it is negligible for the 

foundation models belonging to Set B. The moment capacity is strongly affected by the axial 

load applied on the foundation model; for compressive (positive) loads, the smaller the 

eccentricity of the axial force the lower the ultimate moment of the pile group. The moment 

capacity of pile group B1, subjected to a compression load with eccentricity of 1.45 m is 

comparable to that recorded of pile group B2, where the axial force has exactly the same 

eccentricity but opposite sign. The failure domain based on the conventional approach, in 

which the collapse of the foundation is identified with the achievement of the axial capacity in 

tension or compression on the outermost pile, is also shown for comparison. The collapse 

domain is evaluated for both series of experiments from the axial capacities of the isolated 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

20 

 

piles, see Table 3. The (Q, M) values such that the outermost pile fails in compression or 

uplift will satisfy the set of equations:   

22

22

u

u

a Na
M Q

nR R

a Sa
M Q

nR R

 

  

 (17a,b) 

where the first option about the sign corresponds to the case of counter-clock wise moment 

and the second clockwise moment, while  

2 2

1

n

i

i

a x


  (18) 

in which xi is the abscissa of the i-th pile relative to the centre of the foundation. Equations 

(17) are four linear relationships between moment and axial load identifying a rhombus in the 

(Q, M) plane. They derive from the assumption that axial loads on the piles are distributed 

linearly, which for rectangular groups is not satisfied due to pile-to-pile interaction (group 

effects). However, in the case of annular shaped pile groups, eqs. (17) are rigorous even if 

pile-to-pile interaction effects are explicitly taken into account. The distance of the endpoints 

of the load paths followed in the centrifuge from the boundary of the conventional failure 

domain is paradigmatic of the level of conservatism of current industry-based design methods.   

Finally, the axial stiffness of piles within the groups in set A is considered. The secant 

axial stiffness defined according to the same procedure followed for isolated piles is plotted in 

Figure 18 as a function of the axial capacity in compression or tension. The axial stiffness of 

isolated piles is about 1.5-2 times that of piles in the group. The pre-load on piles within the 

group is larger than that on isolated piles, because of the contribution of the raft, so that the 

degree of mobilization of the lateral capacity is greater for piles within the group.  Moreover, 

group effects, as defined by Poulos (1968) and Butterfield & Banerjee (1971), affect the 
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behaviour of piles within the group. These two factors contribute to a softer response of the 

piles in the group.   

 

5. Discussion and conclusion 

In this paper the results of two series of centrifuge experiments on models of annular-

shaped pile groups embedded in clay were presented with the aim of investigating the bearing 

behaviour of this kind of foundation under vertical, eccentric load.  Two series of centrifuge 

experiments (A and B) on reduced scale models of pile groups were tested using monotonic 

loading paths under constant eccentricity or constant axial load. The raft is clear of the soil 

and the connection between piles and raft is hinged. Each series included also two tests on 

isolated piles, one in compression and one in tension.  

The experimental procedure followed in this work permitted to identify clearly the 

response of the examined foundations until the achievement of a collapse mechanism. It was 

shown that the ultimate moment depends strongly on the slope of the load path in the (Q, M) 

plane, i.e., on the eccentricity of the applied load. Under compression (positive) load, the 

smaller the eccentricity the lower is the moment capacity of the pile group. Pile-to-pile 

interaction effects deduced from the comparison between the axial stiffness of isolated piles 

and that of piles within the groups are particularly relevant, as it was expected. Piles 

belonging to annular groups subjected to moment loading respond in a stiffer manner than 

piles belonging to the pile group under centred load, due to the fact that group effects are less 

pronounced when tension and compression loads on piles act simultaneously. The above 

results should be taken in due consideration to improve ultimate capacity and settlement 

performance criteria of piled foundations under combined axial-moment loads.  

As outlined in the introduction, the data supplied in this work may serve as a benchmark to 

validate the performance of mathematical models aimed at predicting the bearing behaviour 
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of piled foundations in the (Q, M) plane. Also, the experimental procedure illustrated in this 

work may be also conveniently adopt to explore the response of pile groups under load paths 

other than those examined in the paper.  
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Figures  

 

  
 

Figure 1.  Layout of model foundations in experiment sets A and B; dimensions are given in 

mm at model scale, while dimensions in brackets (in m) refer to prototype scale   

 

 

 

 

 

 

 

 

 

Figure



  
 

Figure 2.  Schematic cross sections of foundation models in experiment sets A and B; dimen-

sions are given in mm at model scale, while dimensions in brackets (in m) refer to 

prototype scale    

 



 

Figure 3.  Setup used for clay consolidation 

 

 

Figure 4.  Profile of (a) vertical effective stress at various stages in the test, and (b) theoretical 

and experimental undrained shear strength profiles  



 

Figure 5.  Template raft for pile group installation  

 

 

 

Figure 6.  Layout of monitoring devices adopted in the experiments; dimensions are given in 

mm at model scale, while dimensions in brackets (in m) refer to prototype scale   

 



 

Figure 7. Foundation model for loading test in compression under high eccentricity  

 

 

Figure 8. Foundation model for loading test in uplift under small eccentricity  

 

 

 



 

Figure 9.  Time history of the average value of the rotations recorded by MEMS glued on cap 

of pile group A2 

 

 

 

Figure 10. Load settlement response of isolated piles in compression and in tension 

 



 

Figure 11. A1: Pile group under centered load: (a) load displacement curves of piles equipped 

with load cells; (b) load settlement response of the group 



 

Figure 12. A2: Pile group under vertical, high eccentric load: (a) load-settlement curves of 

piles fitted with load cells; (b) load-rotation curve for the pile group 

 

 

 

 

 

 

 

 

 



 

Figure 13. B1: Pile group under compressive load with small eccentricity: (a) load-settlement 

curves of piles equipped with load cells; (b) load-rotation curve for the pile group  

 



 

Figure 14. B2: Pile group under tension load with small eccentricity: (a) load-settlement 

curves of piles equipped with load cells; (b) load-rotation and load-average settlement 

curves for the pile group 

 

 

 

 

 

 

 

 

 



 

Figure 15. Set A - load histories from LCs: (a) pile group A1; (b) pile group A2  

 

 



 

Figure 16. Set B - load histories from LCs: (a) pile group B1; (b) pile group B2 

 

 

 

Figure 17. Load paths followed in the centrifuge and conventional failure domains 

 



 

Figure 18. Axial stiffness vs. axial capacity for piles within the groups 
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Tables  

Table 1. Properties of Speswhite Kaolin clay (Lau, 2015) 
Plastic limit, PL (%) 30 
Liquid limit, LL (%) 63 

Plasticity Index ,PI (%) 33 
Specific gravity, Gs 2.6 

Slope of critical state line (CSL) in q-p' plane, M 0.9 
Slope of unloading-reloading line,   0.039 

Intercept of CSL at p'=1 kPa,  3.31 
Slope of normal compression line,  0.22 

 

Table 2. Masses of foundation elements at model scale (kg) 
Component Set A Set B 

Isolated pile in tension  0.120 0.120 
Isolated in compression 0.115 0.117 
Piles of group 1- total 0.680 0.688 

Connecting cap for pile group 1 0.382 0.440 
Piles of group 2 - total 0.665 0.670 

Connecting cap for pile group 2 0.485 0.430 

 

Table 3. Axial capacity and axial stiffness in compression and uplift of isolated piles 
Test  Set Qmax[Qmin] 

(kN) 
Nu[-Su] 

(kN) 
W 

(kN) 
Kc[Kt] 

(MN/m) 
compression A 341 455 114 28 

[tension] A -379 -267 112 28 
compression B 381 496 115 28 

[tension] B -323 -204 119 25 

 

Table 4. Ultimate axial-moment coordinates from the experiments on pile groups 
Load 
path 

Set e 
(m) 

Wpiles 
(kN) 

 Wcap 
(kN) 

M0 
(kNm) 

Qext 
(kN) 

Qu 
(kNm) 

Mu 
(kNm) 

Centered A 0 834 379 0 2141 3354 0 
Eccentric A 7,25 815 481 440 547 1843 4402 
Eccentric  B 1,45 822 424 14 2478 3724 3608 
Eccentric B 1,45 840 433 17 -2033 -759 -2930 

 

Table


