This paper describes the UNITOR system that participated to the “multimoDal Artefacts recogNition Knowledge for MEMES” (DANKMEMES) task within the context of EVALITA 2020. UNITOR implements a neural model which combines a Deep Convolutional Neural Network to encode visual information of input images and a Transformer-based architecture to encode the meaning of the attached texts. UNITOR ranked first in all subtasks, clearly confirming the robustness of the investigated neural architectures and suggesting the beneficial impact of the proposed combination strategy.

Breazzano, C., Rubino, E., Croce, D., Basili, R. (2020). UNITOR @ DANKMEMES: Combining convolutional models and transformer-based architectures for accurate MEME management. In CEUR Workshop Proceedings. CEUR-WS.

UNITOR @ DANKMEMES: Combining convolutional models and transformer-based architectures for accurate MEME management

Croce D.;Basili R.
2020-12-01

Abstract

This paper describes the UNITOR system that participated to the “multimoDal Artefacts recogNition Knowledge for MEMES” (DANKMEMES) task within the context of EVALITA 2020. UNITOR implements a neural model which combines a Deep Convolutional Neural Network to encode visual information of input images and a Transformer-based architecture to encode the meaning of the attached texts. UNITOR ranked first in all subtasks, clearly confirming the robustness of the investigated neural architectures and suggesting the beneficial impact of the proposed combination strategy.
7th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop, EVALITA 2020
2020
Rilevanza internazionale
1-dic-2020
Settore INF/01 - INFORMATICA
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
English
Intervento a convegno
Breazzano, C., Rubino, E., Croce, D., Basili, R. (2020). UNITOR @ DANKMEMES: Combining convolutional models and transformer-based architectures for accurate MEME management. In CEUR Workshop Proceedings. CEUR-WS.
Breazzano, C; Rubino, E; Croce, D; Basili, R
File in questo prodotto:
File Dimensione Formato  
paper139.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 273.8 kB
Formato Adobe PDF
273.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/269053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact