Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
In this paper we examine some nonparametric evaluation methods to compare the prediction capability of supervised classification models. We show also the importance, in nonparametric models, to eliminate the noise variables with a simple selection procedure. It is shown that a simpler model usually gives lower prediction error and is more interpretable. We show some empirical results applying nonparametric classification models on real and artificial data sets.
Borra, S., Di Ciaccio, A. (2005). Methods to compare nonparametric classifiers and to select the predictors. In New developments in classification and data analysis: proceedings of the meeting of the Classification and data analysis group (CLADAG) of the Italian statistical society, University of Bologna, September 22-24, 2003. Edited by Vichi, M., Monari, P., Mignani, S., Montanari, A (pp.11-19). Berlin : Springer [10.1007/b138989].
Methods to compare nonparametric classifiers and to select the predictors
In this paper we examine some nonparametric evaluation methods to compare the prediction capability of supervised classification models. We show also the importance, in nonparametric models, to eliminate the noise variables with a simple selection procedure. It is shown that a simpler model usually gives lower prediction error and is more interpretable. We show some empirical results applying nonparametric classification models on real and artificial data sets.
Borra, S., Di Ciaccio, A. (2005). Methods to compare nonparametric classifiers and to select the predictors. In New developments in classification and data analysis: proceedings of the meeting of the Classification and data analysis group (CLADAG) of the Italian statistical society, University of Bologna, September 22-24, 2003. Edited by Vichi, M., Monari, P., Mignani, S., Montanari, A (pp.11-19). Berlin : Springer [10.1007/b138989].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/26747
Citazioni
ND
3
3
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.