The state feedback regulation of nonlinear systems of order 'n' in parametric strict-feedback form is considered. A simple, easy to tune, adaptive control with projected parameter estimates is proposed. The uncertain parameter vector is estimated by parallel vector estimates whose differences are constrained to tend asymptotically to zero. When the uncertain parameter vector is identifiable, the closed loop system is globally asymptotically and locally exponentially stable. Three comparative examples illustrate the advantages of the proposed simple adaptive control over the tuning functions or extended matching approaches.

Tomei, P., Marino, R. (2020). Adaptive nonlinear control with constrained parallel parameter estimates. SYSTEMS & CONTROL LETTERS, 143 [10.1016/j.sysconle.2020.104739].

Adaptive nonlinear control with constrained parallel parameter estimates

Tomei P.
;
Marino R.
2020-01-01

Abstract

The state feedback regulation of nonlinear systems of order 'n' in parametric strict-feedback form is considered. A simple, easy to tune, adaptive control with projected parameter estimates is proposed. The uncertain parameter vector is estimated by parallel vector estimates whose differences are constrained to tend asymptotically to zero. When the uncertain parameter vector is identifiable, the closed loop system is globally asymptotically and locally exponentially stable. Three comparative examples illustrate the advantages of the proposed simple adaptive control over the tuning functions or extended matching approaches.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/04 - AUTOMATICA
English
Con Impact Factor ISI
Adaptive control, nonlinear state feedback control, overparametrization, constrained estimates, strict-feedback form
https://www.sciencedirect.com/science/article/pii/S0167691120301201
Tomei, P., Marino, R. (2020). Adaptive nonlinear control with constrained parallel parameter estimates. SYSTEMS & CONTROL LETTERS, 143 [10.1016/j.sysconle.2020.104739].
Tomei, P; Marino, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167691120301201-main.pdf

solo utenti autorizzati

Descrizione: articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 492.04 kB
Formato Adobe PDF
492.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/265042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact