Motivated by the empirical evidence of high-frequency lead-lag effects and cross-asset linkages, we introduce a multi-asset price formation model which generalizes standard univariate microstructure models of lagged price adjustment. Econometric inference on such model provides: (i) a unified statistical test for the presence of lead-lag correlations in the latent price process and for the existence of a multi-asset price formation mechanism; (ii) separate estimation of contemporaneous and lagged dependencies; (iii) an unbiased estimator of the integrated covariance of the efficient martingale price process that is robust to microstructure noise, asynchronous trading, and lead-lag dependencies. Through an extensive simulation study, we compare the proposed estimator to alternative approaches and show its advantages in recovering the true lead-lag structure of the latent price process. Our application to a set of NYSE stocks provides empirical evidence for the existence of a multi-asset price formation mechanism and sheds light on its market microstructure determinants. Supplementary materials for this article are available online.

Buccheri, G., Corsi, F., Peluso, S. (2020). High-Frequency Lead-Lag Effects and Cross-Asset Linkages: A Multi-Asset Lagged Adjustment Model. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1-22 [10.1080/07350015.2019.1697699].

High-Frequency Lead-Lag Effects and Cross-Asset Linkages: A Multi-Asset Lagged Adjustment Model

Buccheri, Giuseppe;
2020-01-01

Abstract

Motivated by the empirical evidence of high-frequency lead-lag effects and cross-asset linkages, we introduce a multi-asset price formation model which generalizes standard univariate microstructure models of lagged price adjustment. Econometric inference on such model provides: (i) a unified statistical test for the presence of lead-lag correlations in the latent price process and for the existence of a multi-asset price formation mechanism; (ii) separate estimation of contemporaneous and lagged dependencies; (iii) an unbiased estimator of the integrated covariance of the efficient martingale price process that is robust to microstructure noise, asynchronous trading, and lead-lag dependencies. Through an extensive simulation study, we compare the proposed estimator to alternative approaches and show its advantages in recovering the true lead-lag structure of the latent price process. Our application to a set of NYSE stocks provides empirical evidence for the existence of a multi-asset price formation mechanism and sheds light on its market microstructure determinants. Supplementary materials for this article are available online.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore SECS-S/06 - METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE
Settore SECS-P/05 - ECONOMETRIA
Settore SECS-S/03 - STATISTICA ECONOMICA
English
Asynchronous trading; Cross-asset trading; Granger causality; Microstructure noise; Price discovery
Buccheri, G., Corsi, F., Peluso, S. (2020). High-Frequency Lead-Lag Effects and Cross-Asset Linkages: A Multi-Asset Lagged Adjustment Model. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1-22 [10.1080/07350015.2019.1697699].
Buccheri, G; Corsi, F; Peluso, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
buccheri2019jbes.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
onlineAppendix.pdf

accesso aperto

Descrizione: Proofs and supplemental results
Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 368.85 kB
Formato Adobe PDF
368.85 kB Adobe PDF Visualizza/Apri
buccheri2019jbesID.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 5.81 MB
Formato Adobe PDF
5.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/253283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 15
social impact