
High-Frequency Lead-Lag Effects and Cross-Asset Linkages: a

Multi-Asset Lagged Adjustment Model

Giuseppe Buccheri∗, Fulvio Corsi†, Stefano Peluso‡

Online Appendix

∗Buccheri: University of Rome Tor Vergata, giuseppe.buccheri@sns.it (corresponding author)
†Corsi: Department of Economics, University of Pisa and City University of London, fulvio.corsi@gmail.com
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1 EM algorithm

As a first step, we assume there are no missing observations. We will show how to handle missing

observations in the next sub-section. We denote by Xn = {Z0, . . . , Zn} the set of latent prices and

by Yn = {Y1, . . . , Yn} the set of observed prices. Also, let us assume that Z0 ∼ N(µ,Σ). Note

that, since the knowledge of Zt−1 completely determines the last d components of Zt, the density

function f(Zt|Zt−1) can be written as:

f(Zt|Zt−1) = f(MZt|Zt−1) (1)

Therefore, denoting by logL = logL(Yn,Xn) the complete log-likelihood function, we have:

logL = const− 1

2
log |Σ| − 1

2
(Z0 − µ)′Σ−1(Z0 − µ)

− n

2
log |Q| − 1

2

n∑
t=1

(Zt − ΦZt−1)
′M ′Q−1M(Zt − ΦZt−1)

− n

2
log |H| − 1

2

n∑
t=1

(Yt −MZt)
′H−1(Yt −MZt)

(2)

The EM algorithm provides an iterative method for finding the MLE by successively maximizing

the conditional expectation of the complete log-likelihood function. The latter can be computed

using the Kalman filter and smoothing recursions.

Let us introduce the following quantities which can be recovered as an output of the Kalman

filter and smoothing recursions in Section (1.3):

Zs
t = E[Zt|Ys] (3)

P s
t = Cov[Zt|Ys] (4)

P s
t,t−1 = Cov[Zt, Zt−1|Ys] (5)

With s = t, s < t and s > t, the resulting conditional expectation is, respectively, an update filter,

a predictive filter and a smoother. The Kalman filter is initialized with diffuse initial conditions,

i.e. we set E[Z1|Y1] = 0 and Cov[Z1|Y1] = κId with κ → ∞. At iteration r, the expectation step

in the EM algorithm consists in taking the conditional expectation of the complete log-likelihood

given the observations Yn and using the estimate of Ω = {F,Q,H} obtained at step r − 1:

E[logL|Yn, Ω̂r−1] = −1

2
log |Σ| − 1

2
Tr[Σ−1[(Zn

0 − µ)(Zn
0 − µ)′ + Pn

0 ]

− n

2
log |Q| − 1

2
Tr[M ′Q−1M(C −BΦ′ − ΦB′ + ΦAΦ′)]

− n

2
log |H| − 1

2
Tr[H−1

n∑
t=1

[(Yt −MZn
t )(Yt −MZn

t )′ +MPn
t M

′]

(6)
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where A, B and C are given by:

A =

n∑
t=1

(Pn
t−1 + Zn

t−1Z
n′
t−1) (7)

B =
n∑

t=1

(Pn
t,t−1 + Zn

t Z
n′
t−1) (8)

C =

n∑
t=1

(Pn
t + Zn

t Z
n′
t ). (9)

In the maximization step, the function Q(Ω|Ω̂r−1) = E[logL|Yn, Ω̂r−1] is maximized with re-

spect to Ω. Let us consider the following terms depending on F , Q and H:

G1(F,Q) = −1

2
Tr[M ′Q−1M(C −BΦ′ − ΦB′ + ΦAΦ′)]

G2(F,Q) = −n
2

log |Q|+G1(F,Q)

G3(H) = −n
2

log |H| − 1

2
Tr[H−1[(Yt − PZt)(Yt − PZt)

′ +MPn
t M

′]

We start by solving the first order condition ∇FG1(F,Q) = 0. Let us write the matrices A and B

in the following form:

A =

A11 A12

A21 A22

 , B =

B11 B12

B21 B22

 (10)

where Aij and Bij , i = 1, 2 are d × d submatrices of A and B. In Section (1.2) we prove the

following:

Proposition 1. The solution of the matrix equation ∇FG1(F,Q) = 0 is:

F̂r = ΓΘ−1 (11)

where Γ = B11 −B12 −A11 +A12 and Θ = A11 +A22 −A12 −A21. The solution of the two matrix

equations ∇QG2(F̂r, Q) = 0, ∇HG3(H) = 0 are:

Q̂r =
Υ̂

n
, Ĥr =

diag(Λ)

n
(12)

where Υ̂ = M(C −BΦ̂′r − Φ̂rB
′ + Φ̂rAΦ̂′r)M

′, Λ =
∑n

t=1[(Yt −MZn
t )(Yt −MZn

t )′ +MPn
t M

′] and

Φ̂r =

Id + F̂r −F̂r

Id 0d

 (13)
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Conditions under which the EM algorithm converges to a local maximum of the incomplete

log-likelihood function are studied by Wu (1983). We check convergence by looking at the relative

increase of the log-likelihood and stop the algorithm when it is lower than some small threshold

(µ = 10−6 in our simulation and empirical study). The log-likelihood can be computed in the

prediction error decomposition form:

logL = const− 1

2

n∑
t=1

log |Ft| −
1

2

n∑
t=1

v′tF
−1
t vt (14)

where vt = Yt −MZt−1
t is the prediction error and Ft = MP t−1

t M ′ +H.

Once F̂ , Q̂ and Ĥ have been estimated, the matrix of price adjustment Ψ and the covariance

matrix of the efficient log-price process Σ can be computed as:

Ψ̂ = Id − F̂ , Σ̂ = Ψ̂−1Q̂Ψ̂′−1 (15)

The Kalman filter and smoothing recursions in Section (1.3) provide filtered and smoothed estimates

of the lagged price Xt. From these, using Eq. (3), one also obtains as a byproduct filtered and

smoothed estimates of the martingale efficient log-price process.

1.1 Missing value modification

The update formulas in the maximization step can be modified to take into account missing values.

Let us assume that, at time t, d1 components in the vector Yt are observed while the remaining

d2 are not observed. We consider the d1-dimensional vector Y
(1)
t of observed components and the

d1 × d matrix M
(1)
t whose lines are the lines of M corresponding to Y

(1)
t . Also, we consider the

d1 × d1 covariance matrix H
(11)
t of observed components disturbances. Following Shumway and

Stoffer (2015), the Kalman filter and smoothing recursions in Section (1.3) and the prediction error

decomposition form of the log-likelihood, Eq. (14) are still valid, provided that one replaces Yt, M

and H with:

Y(t) =

Y (1)
t

0

 , M(t) =

M (1)
t

0

 , H(t) =

H(11)
t 0

0 I(22)

 (16)

where I(22) is the d2 × d2 identity matrix and 0 generically denotes zero arrays of appropriate

dimension. Note that the time dependence in M(t) and H(t) is only due to missing observations,

while the matrices M and H are constant over time.

Taking the conditional expectation in Eq. (2) requires some modifications in case of missing

observations. The second and the fourth term remain as in Eq. (6), provided that one runs Kalman
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filter and smoothing recursions as described in (16). The last term changes because one needs to

evaluate expectations of Yt conditioning to the incomplete data Y(1)
n = {Y (1)

1 , Y
(1)
2 , . . . , Y

(1)
n }. If H

is diagonal, as we are assuming here, Shumway and Stoffer (1982) showed that:

E[(Yt −MZt)(Yt −MZt)
′|Y(1)

n ] = (Y(t) −M(t)Z
n
t )(Y(t) −M(t)Z

n
t )′

+M(t)P
n
t M

′
(t) +

0 0

0 Ĥ22,t,r−1

 (17)

where Ĥ22,r−1 is the d2 × d2 covariance matrix of unobserved components disturbances at time t

obtained using the estimate at step r − 1 of the matrix H. Therefore, the update equation for H

becomes:

Ĥ =
diag(Λ∗)

n
(18)

where

Λ∗ =
n∑

t=1

Dt

(Y(t) −MZn
t )(Y(t) −MZn

t )′ +M(t)P
n
t M

′
(t) +

0 0

0 Ĥ22,t,r−1

D′t, (19)

Dt being a permutation matrix that rearranges the components of Yt in their original order.

1.2 Proof of Proposition 1

We will use the following matrix differentiation rules:

∇Atr(AB) = B′ (20)

∇Atr(ABA′C) = CAB + C ′AB′ (21)

∇A|A| = |A|(A−1)′ (22)

where A, B and C are matrices of appropriate dimensions.

Let us re-write G1(F,Q) as:

G1(F,Q) = −1

2
Tr[Q−1(MCM ′ − B̃Φ̃′ − Φ̃B̃′ + Φ̃AΦ̃′)] (23)

where we have defined B̃ = MB and Φ̃ = MΦ. Let us compute explicitly the terms in G1(F,Q)

depending on F :

B̃Φ̃′ = B11(I + F ′)−B12F
′

Φ̃B̃′ = (I + F )B′11 − FB′12

Φ̃AΦ̃′ = (I + F )A11(I + F ′)− FA21(I + F ′)

− (I + F )A12F
′ + FA22F

′
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Therefore, we need to solve ∇FG1(F ) = 0, where:

G1(F ) = Tr[Q−1(−B11(I + F ′) +B12F
′ − (I + F )B′11 + FB′12

+ (I + F )A11(I + F ′)− FA21(I + F ′)− (I + F )A12F
′ + FA22F

′)]

This can be done using Eq. (20) and (21). One obtains:

∇FG1(F ) = Q−1[−2(B11 −B12 −A11 +A12)

+ 2F (A11 +A22 −A21 −A12)]
(24)

and therefore:

F̂ = ΓΘ−1 (25)

We now solve ∇Q−1G2(F̂r, Q) = 0. We obtain:

∇Q−1G2(F̂r, Q) =

= ∇Q−1

[
−n

2
log |Q| − 1

2
Tr(Q−1Υ̂)

]
=
n

2
Q− 1

2
Υ̂′

(26)

and therefore, since Υ̂′ = Υ̂:

Q̂ =
Υ̂

n
(27)

Finally, now solve ∇HG3(F̂r, Q) = 0. Note that, since H is diagonal, we can write:

∇HG3(H) =

= ∇H

[
−n

2
log |H| − 1

2
Tr(H−1diag(Λ))

]
=
n

2
H − 1

2
Λ

(28)

and therefore:

Ĥ =
diag(Λ)

n
(29)

1.3 Kalman filter and smoothing recursions

The set of Kalman filter recursions for the state-space model (9), (10) are given by:

Zt−1
t = ΦZt−1

t−1 (30)

P t−1
t = ΦP t−1

t−1 Φ′ +Q (31)

Kt = P t−1
t M ′(MP t−1

t M ′ +H)−1 (32)

Zt
t = Zt−1

t +Kt(Yt −MZt−1
t ) (33)

P t
t = P t−1

t −KtHP
t−1
t (34)
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for t = 1, . . . , n. The set of backward smoothing recursions are given by:

Jt−1 = P t−1
t−1 Φ′(P t−1

t )−1 (35)

Zn
t−1 = Zt−1

t−1 + Jt−1(X
n
t − ΦZt−1

t−1 ) (36)

Pn
t−1 = P t−1

t−1 + Jt−1(P
n
t − P t−1

t )J ′t−1 (37)

for t = n, . . . , 1. The covariance Pn
t,t−1 in Eq. (8) can be computed using the following backward

recursion:

Pn
t−1,t−2 = P t−1

t−1 J
′
t−2 + Jt−1(P

n
t,t−1 − ΦP t−1

t−1 )J ′t−2 (38)

where t = n, . . . 2 and Pn
n,n−1 = (I −KnM)ΦPn−1

n−1 .

1.4 Computation of lead-lag correlations

In order to compute lead-lag correlations, we first compute the j-th order autocovariance matrix,

which is defined as:

Sj = E[∆Xt∆X
′
t−j ] (39)

It can be evaluated from the estimated matrices F̂ and Q̂ as:

Ŝj = F̂ Ŝj−1, j = 1, 2, . . . (40)

where the covariance matrix S0 = E[∆Xt∆X
′
t] is estimated as:

vec(Ŝ0) = (Id2 − F̂ ⊗ F̂ )−1vec(Q̂) (41)

see e.g. Hamilton (1994). Lead-lag correlations are finally obtained by normalizing the autocovari-

ances with the diagonal elements of Ŝ0.

2 Arbitrage-linked securities

2.1 The MLA with cointegrated dynamics

In this section we discuss the case in which all or some of the assets are linked by non-arbitrage

constraints. A paradigmatic example is given by a security traded in different exchanges. Due to

non-arbitrage, the prices observed in the these exchanges cannot move “too far” from each others. In

his pioneering work, Hasbrouck (1995) proposed a vector error correction model (VECM) approach
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and introduced the well-known information shares (IS), which quantify the fraction of the total

variance of the (unique) efficient price process explained by individual exchanges. Alternative

strategies have been proposed over the years by several researchers (including, amongst others,

Booth et al. 1999, Chu et al. 1999, deB. Harris et al. 2002, De Jong and Schotman 2010).

The MLA with cointegration restrictions can be employed to determining the contribution of

individual exchanges to the price discovery of arbitrage-linked securities. Let us first consider a

simple case with two distinct securities. The efficient log-prices of the two securities evolve as a

random walk:

P
(i)
t+1 = P

(i)
t + u

(i)
t+1, i = 1, 2 (42)

where Var[u
(i)
t+1] = qi and Cov[u

(1)
t+1, u

(2)
t+1] = c. Let us assume that the first security is traded in

d1 ≥ 1 different markets and the second security is traded in d2 ≥ 1 different markets. We denote

by Y
(1)
t ∈ Rd1 the vector of observations of the first asset log-price in the d1 markets and, similarly,

we denote by Y
(2)
t ∈ Rd2 the vector of observations of the second asset log-price in the d2 markets.

We define d = d1 + d2 and write Yt = [Y
(1)′
t , Y

(2)′
t ]′ ∈ Rd as:

Yt = Xt + εt (43)

where Cov[εt] = H and Xt is the lagged log-price process. The latter is decomposed as Xt =

[X
(1)′
t , X

(2)′
t ]′, where X

(1)
t ∈ Rd1 and X

(2)
t ∈ Rd2 are given by:

X
(i)
t+1 = X

(i)
t + Ψ(i)(ιdiP

(i)
t+1 −X

(i)
t ), i = 1, 2 (44)

with Ψ(i) ∈ Rdi×di and ιdi ∈ Rdi is a vector of ones. The difference with respect to Eq. (3) in

the paper is that X
(i)
t ∈ Rdi pertain the same security and are therefore driven by the same scalar

log-price P
(i)
t+1.

It is immediate to see that the log-return process ∆X
(i)
t = X

(i)
t − X

(i)
t−1 follows the VAR(1)

process:

∆X
(i)
t+1 = (Idi −Ψ(i))∆X

(i)
t + Ψ(i)ιdiω

(i)
t+1, i = 1, 2 (45)

As before, the difference with respect to Eq. (5) in the paper is that ∆X
(i)
t+1 ∈ Rdi are now driven

by the same scalar innovation ω
(i)
t . We then consider the whole vector of log-returns ∆Xt =

[∆X
(1)′
t ,∆X

(2)′
t ]′ ∈ Rd, which follows:

∆Xt+1 = (Id −Ψ)∆Xt + Ψωt+1 (46)
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where:

Ψ =

 Ψ(1) 0d1×d2

0d2×d1 Ψ(2)

 , ωt+1 =

ιd1ω(1)
t+1

ιd2ω
(2)
t+1

 (47)

Note that the covariance matrix Q = Cov[ωt] has rank equal to two.

It is not difficult to generalize the previous equations to the case in which there are k distinct

securities, with the i-th efficient log-price observed in di ≥ 1 different markets, i = 1, . . . , k and

Cov[u
(i)
t+1, u

(j)
t+1] = cij . We recover the standard MLA considered in the paper when di = 1 for each

i. If di > 1 for at least one i, some of the log-prices are cointegrated. Defining d =
∑k

i=1 di, the

vector of log-returns ∆Xt = [∆X
(1)′
t , . . . ,∆X

(k)′
t ]′ ∈ Rd follows:

∆Xt+1 = (Id −Ψ)∆Xt + Ψωt+1 (48)

where:

Ψ =


Ψ(1) . . . 0n1×nk

...
. . .

...

0nk×n1 . . . Ψ(k)

 , ωt+1 =


ιn1ω

(1)
t+1

...

ιnk
ω
(k)
t+1

 (49)

The rank of the covariance matrix Q = Cov[ωt+1] is always equal to k.

Similarly to what we have done in the standard MLA, let us introduce the augmented state

vector Zt = [X ′t, X
′
t−1]

′ ∈ R2d. We can re-write Eq. (43), (46) as:

Yt = MZt + εt, Cov[εt] = H (50)

Zt+1 = ΦZt +Rξt+1, Cov[ξt] = W (51)

where:

Φ =

2Id −Ψ −Id + Ψ

Id 0d

 , R =

Ψ 0d

0d 0d

 , W =

Q 0d

0d 0d

 (52)

and M = [Id, 0d]. This is a linear-Gaussian state-space representation that is susceptible of treat-

ment through the Kalman filter. Due to the singularity of Q, the complete log-likelihood in Eq.

(2) does not exist. The complete log-likelihood exists in a k-dimensional subspace of Rd gener-

ated by linear combinations of the components of Xt. We thus estimate the model by standard

maximum-likelihood, i.e. by numerically optimizing the log-likelihood in Eq. (14). Compared to

the standard MLA described in the paper, numerical optimization is feasible here, because the

number of parameters of Q is O(k2) rather than O(d2). For instance, if there is only one security
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traded in d exchanges, we only need to estimate the variance of the unique innovation driving the

dynamics in the d exchanges, regardless the value of d.

The diagonal elements of Ψ(i) induce a delay between the di exchanges and the i-th efficient log-

price. For this reason they can be regarded as a measure of the informativeness of each exchange.

For instance, if we find that one market anticipates another market, we conclude that the former is

more informative. In principle one can study “cross-market” effects among different exchanges

generated by non-diagonal coefficients in Ψi. This is computationally feasible when di is not

too large, since the number of parameters of a non-diagonal Ψi scales as O(d2i ). Similarly, to

include cross-asset effects among prices corresponding to different securities, we need non-diagonal

coefficients in Ψ. Even in this case one should pay attention that the total number of coefficients

in Ψ does not grow too fast with d.

2.2 Comparison with other methodologies

As we have seen in the Monte-Carlo analysis of Section (3) in the paper, one of the main advantages

of the MLA is that parameter estimates are not affected by differences in the level of trading activity

among different assets. Similarly, in the case of arbitrage-linked securities, parameter estimates

are not affected by differences in the level of trading activity among different markets. From an

empirical point of view, this circumstance is of particular relevance in presence of informed traders.

As predicted by classical models of price formation (Glosten and Milgrom 1985, Kyle 1985), the

informed traders buy or sell securities if their trade guarantees a profit net of transaction costs,

i.e. when their size relative to fundamental values is large. According to this logic, the informed

traders tend to buy or sell in the market with larger mispricing between the efficient log-price and

the mid-quote price.

To illustrate this concept, we consider the price formation model in Bandi et al. (2017) and

adapt it to our framework with one security traded in several exchanges. In this model of price

formation we have three components: an efficient log-price process, the midquote adjustments and

the observed log-prices. The efficient log-price process follows a random walk:

Pt+1 = Pt + ut+1 (53)

where Var[ut] = q. We assume that the security described by Pt is traded in two exchanges. The

midquote log-price is related to the efficient log-price by a lagged adjustment process:

X
(i)
t+1 = X

(i)
t + δ(i)(Pt+1 −X(i)

t ), i = 1, 2 (54)
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The observed log-price depends on the trader type. Let us denote by I the probability of arrival

of informed traders. For simplicity, we assume that I is the same in both markets. The informed

trader knows the value of the efficient log-prices Pt and decides whether to trade or not by comparing

the mispricing |X(i)
t − Pt| to the transaction cost c(i). More specifically, if |X(i)

t − Pt| > c(i) the

informed trader decides to trade and the observed log-price is:

Y
(i)
t = X

(i)
t + c · 1{Pt−X(i)

t >c} − c · 1{Pt−X(i)
t <−c}, i = 1, 2 (55)

In contrast, if |X(i)
t − Pt| ≤ c(i), the informed trader decides not to trade. Noise traders behave

randomly. They simply toss a coin and decide whether to trade or not. When a noise trader arrives

on the market, the observed log-price is:

Y
(i)
t = X

(i)
t + ν

(i)
t c(i) (56)

where ν
(i)
t is a sequence of independent Bernoulli variables taking the values ±1 with likelihood

50%.

If there are informed traders (I > 0), the level of trading activity depends on the transaction cost

c(i) and on the speed δ(i) of adjustment to the efficient price. In particular, if c(i) is large, informed

traders cannot reward themselves net of transaction costs, and decide not to trade. Similarly, if the

market rapidly adjusts to the efficient price (δ(i) ≈ 1), the mispricing |X(i)
t − Pt| is small and the

prices are not updated. If I is sufficiently large, the latter case leads to a highly informative market

(i.e. one with a high speed of adjustment to the efficient price) being less traded than an inefficient

market (i.e. one which slowly adapts to the efficient price). In reality this situation might represent

a transition to an equilibrium where the price in the less efficient market gradually reverts to the

martingale process. This simple microstructure model can be extended into several directions, e.g.

introducing a time-varying δ
(i)
t or allowing noise traders to take into account transaction costs (see

Bandi et al. 2017). For simplicity we examine here the basic specification, however nothing prevents

adding other features to simulate more and more realistic scenarios.

The MLA, though misspecified in this setting (note that the measurement noise in Eq. (56) is

not normal), has a clear advantage in being robust to differences in the level of trading activity.

To see this, let us assume that we have two markets, one which rapidly adjusts to new information

(δ(1) = 0.9), and one which adapts slowly (δ(2) = 0.2). For simplicity, transaction costs are assumed

to be the same in the two markets. We set the remaining parameters as c(1) = c(2) = 0.2 $, q = 0.5.

As a time-horizon we consider a trading day of 6.5 hours, from 9:30 to 16:00. We thus simulate 23400
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MLA IS bounds

δ̂(1) δ̂(2) 1st market 2nd market

I = 0 0.8456 (0.051) 0.2108 (0.027) (0.6187, 0.9969) (0.0031, 0.3813)

I = 0.3 0.9175 (0.054) 0.1975 (0.022) (0.3777, 0.9136) (0.0863, 0.6222)

I = 0.5 0.9181 (0.075) 0.1850 (0.042) (0.2717, 0.7692) (0.2307, 0.7282)

I = 0.7 0.8713 (0.078) 0.2234 (0.051) (0.0835, 0.3679) (0.6320, 0.9164)

Table 1: MLA estimates of parameters δ(i) in Eq. (54) with standard errors reported in parenthesis

and IS bounds.

one-second realizations of the efficient log-price Pt in Eq. (53) and of the two lagged adjustment

log-prices X
(1)
t and X

(2)
t in Eq. (54).

We start by assuming that there are no informed traders (I = 0). The observed prices are

determined only by noise traders who do not know the value of the true efficient log-price Pt. The

level of trading activity in the two markets is thus the same. Table (1) shows the parameters δ̂(i),

i = 1, 2 estimated by the MLA and corresponding to the diagonal elements of the matrix Ψ in Eq.

(44). We also report the IS measure of Hasbrouck (1995). The IS is generally not uniquely defined

since it depends on the order of the assets in the underlying VECM. For this reason, we report

for each market the two bounds obtained by reversing the order of the two time-series. The MLA

estimates are very close to the true parameters, and thus we conclude that the first market is the

one where price discovery occurs. Using the IS we get to the same conclusion since the first market

has larger information share and the bounds are relatively narrow.

As I increases, informed traders arrive on the market. They can decide not to trade should

the mispricing |X(i)
t − Pt| be smaller than the transaction costs. The absence of trading leads to

missing values in the two time-series. The MLA estimates remain close to the true parameters,

and we still conclude that the first market is the one where price discovery occurs. In order to

estimate the VECM, we fill the missing values by previous-tick interpolation, as commonly done in

the financial econometric literature. Such procedure leads to erroneous conclusions on the degree of

informativeness of the two markets. As I increases, the IS bounds widen. When I = 0.5, the two

markets have very similar bounds, and it is impossible to discern where price discovery occurs. For

I = 0.7, the bounds narrow but we wrongly conclude that the second market is more informative

than the first. This is due to the first market being less traded than the second because of the large
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amount of informed traders who exploit arbitrage opportunities in the less efficient market.

More generally, asynchronous trading leads to missing values in the observed time-series which

are typically filled by previous-tick interpolation. This leads, in turn, to a large number of “ar-

tificial” zero-returns which are misspecified under the common semimartingale assumption (in

continuous-time) or under the VAR/VECM assumption (in discrete-time). The most known distor-

tions of zero-returns is the Epps effect (cf. e.g. Hayashi and Yoshida 2005 and references therein).

Thus, the fact that we find misleading results when applying the VECM to asynchronous data is

not surprising. The main advantage of the MLA is that it can handle missing observations without

introducing artificial zero returns.

There are other differences between IS and the MLA with cointegrated dynamics. The IS of the

i-th exchange is defined as the fraction of the long-run variance of the common trend imputable to

that exchange. The market contributing with the largest fraction of variance is the most informa-

tive, i.e. the one where price discovery occurs. In the MLA with cointegrated dynamics, the most

informative market is the one with highest speed of adjustment to the efficient log-price. In other

words the market that leads all the other markets is the one where price discovery occurs.

Using these two approaches one may achieve a different conclusion on which market is the

most informative. The main reason is that IS does not depend on the matrices of autoregressive

coefficients of the underlying VECM, as formally shown by Buccheri et al. (2019b). This implies

that,in some circumstances, a market with a substantial delay from the common trend may be

judged as equally informative or even more informative than a faster market (see the examples

in Buccheri et al. 2019b). In the MLA this cannot happen since the most informative market

is, by definition, the one which adapts with highest speed to the common trend represented by

the efficient log-price process. We refer to Buccheri et al. (2019b) for further discussions on these

aspects.

Finally, we point out that, if quote data are available, Xt becomes observable and thus IS is

not affected by asynchronous trading. However, compared to the MLA, it is still true that it may

lead to misleading results in the presence of significant lags between the observed prices and the

underlying martingale process (cf. Buccheri et al. 2019b).
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3 Robustness checks

3.1 Model invariance to the choice of the assets

In Section (4.2) in the paper we estimated the MLA on a cross-section of 10 NYSE stocks and

showed the average cross-autocorrelations in Figures (10), (11). The question naturally arises

whether these lead-lag correlations depend on the specific choice of the dataset and whether by

selecting a subset of these assets one would obtain the same result. This is a standard issue in the

specification of VAR models (see e.g. Kilian and Lütkepohl 2017).

In order to investigate if the recovered lead-lag correlations are robust with respect to the choice

of the assets, we perform the same analysis of Section (4.2) in the paper but here we estimate a

different MLA for each couple of assets. Specifically, in the first case, the lead-lag correlations of

two assets are computed using the log-prices of all the 10 NYSE assets, while in the second case

they are computed based only on the log-prices of the two assets. This comparison is interesting

because we are considering the scenario in which the discrepancy between the two kinds of lead-

lag correlations is largest: estimating the MLA on cross-sections of growing dimensions provides

lead-lag correlations which become more and more similar to those obtained using the entire cross-

section.

The results are reported in Figures (1), (2), where we show in blue the correlogram obtained

in Section (4.2) in the paper and in red the new lead-lag correlations. The lead-lag correlations

recovered using the whole dataset of 10 assets are very similar to those obtained by estimating the

MLA pairwisely. We only observe that, due to data reduction, pairwise correlations are slightly

lower in some cases. However, our conclusions on which among two assets is the leader is invariant

with respect to the choice of the dataset.

In Section (4.3) in the paper we assess the effect of the inclusion of the SPY in the sample of

assets used for the estimation. The SPY differs significantly from the 10 NYSE assets in terms

of liquidity, as it features a larger number of trades per day. Even in that case we find that the

recovered cross-autocorrelation structure is not altered significantly.

3.2 Statistical significance at sparser modelling frequencies

All the empirical results reported in Section (4) have been recovered at the sampling frequency of

one second, which is the highest frequency achievable in our dataset. It is interesting to investigate

how these results would change at sparser frequencies. As a result of data reduction, the use of
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Figure 1: Average cross-autocorrelations of all the couples of assets in Group I. Averages are computed

over all the business days of 2014. We show in blue the lead-lag correlations computed as in Section (4.2)

in the paper and in red the lead-lag correlations computed pairwisely. Error bars denote 95% confidence

intervals. Correlations at positive lags imply that the second asset displayed in the title leads the first asset

and the other way around for negative lags.
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Figure 2: Average cross-autocorrelations of all the couples of assets in Group II. Averages are computed

over all the business days of 2014. We show in blue the lead-lag correlations computed as in Section (4.2)

in the paper and in red the lead-lag correlations computed pairwisely. Error bars denote 95% confidence

intervals. Correlations at positive lags imply that the second asset displayed in the title leads the first asset

and the other way around for negative lags.
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sparser sampling frequencies naturally leads to a lower statistical efficiency. However, the loss of

efficiency is not the only source of concern when subsampling prices at sparser frequencies. Another

aspect that must be taken into account is the fact that, being generated by high-frequency trading

strategies, lead-lad dependencies exist at small time-scales and tend to decay at longer time-scales.

To illustrate this phenomenon, we compare in Figure (3) the average cross-autocorrelations of

the assets of Group I computed at the sampling frequency of one second (in red) and the cross-

autocorrelations of the same assets computed at the sampling frequency of 10 seconds (in blue). We

use the subsample of Section (4.3) which includes SPY data. Figure (4) shows a similar comparison

for the lead-lag correlations between the SPY and the five assets of Group I. We immediately note

that, as a consequence of modelling prices at sparser sampling frequencies, the contemporaneous

correlations increase and the lead-lag correlations decrease. In other words, the lead-lag correlations

detected at higher resolutions are “averaged out” and are eventually seen as contemporaneous

correlations when observing the market at longer time-scales. The cross-autocorrelation structure

of the market thus emerges at small time-scales, where algorithmic trading strategies are more likely

to operate. We obtain the same result when looking at the cross-autocorrelations of the assets of

Group II.

The result of this analysis serves as a guideline for the empirical implementation of the MLA.

In order to exploit more and more information sets, it is preferable to choose the highest avail-

able sampling frequency. In certain circumstances (e.g. when data are available at the millisecond

precision) the computational power required for the estimation might be onerous, depending on

the cross-section dimension. As underlined in Section (2.2) in the paper, a feasible solution is to

reduce the intraday estimation window. Given the large amount of high-frequency data available

even on sub-periods of the trading day, the choice of a shorter window does not affect significantly

the quality of the inference.

3.3 Potential diurnal effects in cross-asset trading

Intraday covariances are characterized by well-known diurnal effects (cf. e.g. Andersen and Boller-

slev, 1997, Tsay, 2005, Bibinger et al., 2014, Buccheri et al., 2019a). For instance, volatilities

are larger at the beginning and at the end of the trading day while correlations tend to increase

throughout the day. We thus wonder whether cross-asset trading exhibits similar intraday pat-

terns. Of course, lead-lag effects are naturally influenced by the intraday pattern of covariances.
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Figure 3: Average cross-autocorrelations of all the couples of assets in Group I. Averages are computed over

all the business days of 2012. We show in blue the lead-lag correlations computed at the sampling frequency

of 10 seconds and in red the lead-lag correlations computed at the sampling frequency of one second. Error

bars denote 95% confidence intervals. Correlations at positive lags imply that the second asset displayed in

the title leads the first asset and the other way around for negative lags.
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Figure 4: Average cross-autocorrelations between SPY and the stocks of Group I. Averages are computed

over all the business days of 2012. We show in blue the lead-lag correlations computed at the sampling

frequency of 10 seconds and in red the lead-lag correlations computed at the sampling frequency of 1 second.

Error bars denote 95% confidence intervals. Correlations at positive lags imply that the second asset displayed

in the title leads the first asset and the other way around for negative lags.
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9:30−11:00 11:01−14:30 14:31−16:00

N. of coefficients of θ
(i)
t

for which H0 is not rejected

(out of 121)

108 114 98

Avg. p-value 0.85 0.87 0.84

Table 2: We report for each of the three sub-periods of the trading day the number of coefficients

of θ
(i)
t for which H0 is not rejected at the 5% confidence level. We also show the average p-value of

the 121 t-tests performed on each time series.

We are instead interested in potential diurnal effects induced by the lagged matrix Ψ of lagged

price adjustment.

In order to investigate the behavior of Ψ at the intraday level, we consider the same subsample

used in the previous analysis and divide the trading day into three sub-periods, the first from 9:30

to 11:00, the second from 11:01 to 14:30 and the third from 14:31 to 16:00. In each of these sub-

periods we estimate the MLA and recover three lagged adjustment matrices, Ψ
(1)
t , Ψ

(2)
t , Ψ

(3)
t , where

t is a daily index going from 03-01-2012 to 28-12-2012. We compare each of these matrices with

the matrix Ψt estimated in the entire day. Specifically, for i = 1, 2, 3, we consider the differences

θ
(i)
t = vec(Ψ

(i)
t −Ψt) and test the null hypothesis H0 that the d2 = 121 elements of θ

(i)
t have mean

equal to zero.

Table (2) shows the results of the one-sample t-test performed for each of the 121 time-series

corresponding to the coefficients of θ
(i)
t , for i = 1, 2, 3. In the first line we report the number of

coefficients for which the null hypothesis H0 is not rejected at the 5% confidence level. In the second

line we report the average p-value of the 121 t-tests. It is immediate to note that the vast majority

of the coefficients of Ψ
(i)
t estimated in the three sub-periods of the trading day are statistically

indistinguishable from the coefficients of Ψt estimated in the entire period. The coefficients for

which H0 is rejected have p-values that are slightly smaller than 5% and always larger than 1%.

This result corroborates the assumption of a constant lagged adjustment matrix Ψ in Section (2)

in the paper and shows that cross-asset trading does not change significantly during the trading

day.
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