Despite their effectiveness, linear models for realized variance neglect measurement errors on integrated variance and exhibit several forms of misspecification due to the inherent nonlinear dynamics of volatility. We propose new extensions of the popular approximate long-memory heterogeneous autoregressive (HAR) model apt to disentangle these effects and quantify their separate impact on volatility forecasts. By combining the asymptotic theory of the realized variance estimator with the Kalman filter and by introducing time-varying HAR parameters, we build new models that account for: (i) measurement errors (HARK), (ii) nonlinear dependencies (SHAR) and (iii) both measurement errors and nonlinearities (SHARK). The proposed models are simply estimated through standard maximum likelihood methods and are shown, both on simulated and real data, to provide better out-ofsample forecasts compared to standard HAR specifications and other competing approaches.

Buccheri, G., Corsi, F. (2019). HARK the SHARK: Realized Volatility Modeling with Measurement Errors and Nonlinear Dependencies*. JOURNAL OF FINANCIAL ECONOMETRICS [10.1093/jjfinec/nbz025].

HARK the SHARK: Realized Volatility Modeling with Measurement Errors and Nonlinear Dependencies*

Buccheri, Giuseppe;
2019-01-01

Abstract

Despite their effectiveness, linear models for realized variance neglect measurement errors on integrated variance and exhibit several forms of misspecification due to the inherent nonlinear dynamics of volatility. We propose new extensions of the popular approximate long-memory heterogeneous autoregressive (HAR) model apt to disentangle these effects and quantify their separate impact on volatility forecasts. By combining the asymptotic theory of the realized variance estimator with the Kalman filter and by introducing time-varying HAR parameters, we build new models that account for: (i) measurement errors (HARK), (ii) nonlinear dependencies (SHAR) and (iii) both measurement errors and nonlinearities (SHARK). The proposed models are simply estimated through standard maximum likelihood methods and are shown, both on simulated and real data, to provide better out-ofsample forecasts compared to standard HAR specifications and other competing approaches.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore SECS-S/06 - METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE
Settore SECS-P/05 - ECONOMETRIA
Settore SECS-S/03 - STATISTICA ECONOMICA
English
Realized volatility; HAR; Measurement errors; Nonlinear time series; Score-driven models; Kalman filter
Buccheri, G., Corsi, F. (2019). HARK the SHARK: Realized Volatility Modeling with Measurement Errors and Nonlinear Dependencies*. JOURNAL OF FINANCIAL ECONOMETRICS [10.1093/jjfinec/nbz025].
Buccheri, G; Corsi, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
oup-accepted-manuscript-2019.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
appendix.pdf

accesso aperto

Descrizione: Proofs and supplemental results
Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 268.67 kB
Formato Adobe PDF
268.67 kB Adobe PDF Visualizza/Apri
buccheri2019jfec2020.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/253281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact