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A Simulation study

The linear DGP used in Section (2.3) does note provide a good description of empirical data, since realized volatility

exhibits several evidences of nonlinear dependencies. In order to perform a more realistic analysis, we do an extensive

simulation study using the two-factor stochastic volatility model of Huang and Tauchen (2005). The same DGP was

also employed by Bollerslev et al. (2016) to test the HARQ model (see their Appendix A). We simulate one-second

data on a regularly spaced grid of 23400 timestamps per day and then compute daily realized variances by summing

up M = 39, 78, 390 intraday squared returns, corresponding to 10, 5, 1-minute sampling frequencies. The simulated

RV series have T = 3000 observations. The in-sample analysis is performed on the last 1000 observations. The

out-of-sample analysis is performed on the same sample of 1000 observations, but the models are estimated on the

first 2000 observations. We generate N = 1000 Monte-Carlo realizations and compare the following models: HAR,

HARQ, HARlog, HARK, SHAR, SHARK, ARMA(1,1), HARST. The ARMA(1,1) and HARST are estimated on

log(RVt). The first part of Table (1) compares the average in-sample mean square error (MSE), mean absolute error

(MAE) and QLIKE.

The true IVt used in the computation of the loss measures is evaluated by summing up 1-sec squared returns1.

We also show the average signal-to-noise ratio estimated by the HARK and SHARK models.

We first discuss the in-sample results. The HARlog outperforms the HAR. Indeed, in contrast to the linear DGP

in Section (2.3), the simulated series has nonlinear dynamics. In this case, as it has been shown on S&P500 data, the

HARlog provides a better dynamic specification, which translates into superior in-sample estimates. As expected,

the HARQ provides better estimates than the HAR in terms of all the three loss measures. Note that the relative

MSE of the HARQ approaches one as M becomes large. This is due to the effect of measurement errors. However,

the relative QLIKE is significantly lower than one even at M = 390, a scenario in which measurement errors are very

small. This result shows that the HARQ also captures nonlinear dependencies.

Except for the fact that the HARK outperforms all other models in terms of MAE, in this in-sample analysis

there are no significant advantages in using the HARK, SHAR and SHARK in place of the HARlog. The reason is

twofold. On the one hand, estimation errors are small, as indicated by the large values of the signal-to-noise ratio δ.

The amount of noise on real data is larger, as indicated by the lower values of δ that we have found in our empirical

application in Section (3). Second, the filtered time-varying parameters resulting from estimating the SHAR and the

SHARK are less erratic than what found on empirical data, where the HAR parameters tend to change significantly

over time (see figures 7, and 10-12 in the paper).

It is more interesting to look at the out-of-sample results, summarized in the second part of Table (1). Both the

HARlog and the HARQ perform better than the HAR, but the HARlog outperforms the HARQ in terms of all the

three loss measures. This implies that, if one is interested in forecasting, modeling logarithmic time series through

the HARlog is more effective than correcting for measurement errors through the HARQ.

The HARK outperforms the HARlog in terms of MAE for M = 39 and M = 78, where measurement errors are

more relevant. In contrast to the in-sample analysis, introducing time-varying parameters allows to improve over

1The simulated prices are not contaminated by microstructure noise. The realized variance is therefore a consistent and unbiased

estimator of the true IV. In presence of microstructure noise, one only needs to replace realized variance with a robust estimator (such

as the two-scale estimator of Zhang et al. 2005) and using a consistent estimator for the variance of the error as a proxy of ht.
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HAR HARQ HARlog HARK SHAR SHARK ARMA HARST

In-sample

M = 39

MSE 1.0000 0.97620 0.98331 0.99210 0.98376 0.99994 0.98866 0.98321

MAE 1.0000 0.98676 0.97516 0.96248 0.97643 0.96478 0.97781 0.97445

QLIKE 1.0000 0.97062 0.9499 0.96401 0.95050 0.96581 0.97911 0.95131

Signal-to-Noise - - - 7.54 - 8.00 - -

M = 78

MSE 1.0000 0.97981 0.98710 0.99148 0.98916 0.99474 0.99101 0.98858

MAE 1.0000 0.98754 0.97748 0.97048 0.97937 0.97310 0.98172 0.97863

QLIKE 1.0000 0.96751 0.9487 0.95535 0.94931 0.95572 0.95910 0.95201

Signal-to-Noise - - - 13.62 - 14.30 - -

M = 390

MSE 1.0000 0.98222 0.98884 0.99017 0.99069 0.99024 0.99587 0.99124

MAE 1.0000 0.98870 0.97817 0.97639 0.97982 0.97905 0.98165 0.97862

QLIKE 1.0000 0.96532 0.9446 0.94634 0.94502 0.9457 0.95673 0.95663

Signal-to-Noise - - - 61.17 - 62.70 - -

Out-of-sample

M = 39

MSE 1.0000 0.98932 0.96745 0.97617 0.96002 0.98566 0.97910 0.96123

MAE 1.0000 0.98654 0.96869 0.95723 0.97210 0.95588 0.97443 0.97131

QLIKE 1.0000 0.97024 0.92573 0.94130 0.92118 0.94763 0.95523 0.93001

M = 78

MSE 1.0000 0.99365 0.97322 0.97758 0.96914 0.98080 0.98011 0.96547

MAE 1.0000 0.98796 0.97130 0.96511 0.97498 0.96405 0.97899 0.97501

QLIKE 1.0000 0.96036 0.92468 0.93155 0.92112 0.93358 0.93251 0.93100

M = 390

MSE 1.0000 0.99821 0.97634 0.99161 0.97368 0.97642 0.97793 0.97694

MAE 1.0000 0.98822 0.97275 0.97605 0.97701 0.97313 0.98662 0.98100

QLIKE 1.0000 0.95587 0.92332 0.94955 0.91962 0.92288 0.93122 0.93283

Table 1: Average relative in-sample and out-of-sample losses of HAR, HARQ, HARlog, HARK, SHAR, SHARK, ARMA(1,1), HARST

models on 1000 simulated daily RV data. Signal-to-Noise denotes the average signal-to-noise ratio estimated by the HARK and the

SHARK.
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the HARlog and the HARK. The SHAR has lowest MSE and QLIKE, while the SHARK provides the lowest MAE.

Therefore, even in presence of weak nonlinear dependencies, modeling the residual misspecification of the HARlog

and the HARK leads to significantly better out-of-sample forecasts. The ARMA(1,1) outperforms the HAR. This is

due to the logarithmic transformation. Indeed, it is in turn outperformed by the HARlog. Finally. we note that the

performance of the HARST is close to that of the SHAR, as both models capture nonlinear dependencies.

B Summary statistics of the dataset used in the empirical application

Stock Symbol Min Mean Median Max

SP500 0.0177 0.9243 0.4808 38.2914

Citigroup C 0.1473 9.6360 2.5460 972.4663

Morgan Stanley MS 0.1847 11.1067 2.8120 1.64e+03

Goldman Sachs GS 0.2056 4.9457 1.6992 394.4546

JPMorgan Chase JPM 0.1035 5.2330 1.6949 254.1726

Bank of America BAC 0.1088 7.8898 2.1562 377.5072

ConocoPhillips COP 0.1303 2.8366 1.4524 191.3988

Exxon Mobil XOM 0.1130 1.9655 0.9875 135.4296

Chevron CVX 0.1052 2.2589 1.1585 142.7586

Schlumberger SLB 0.3042 4.6566 2.7218 165.4489

General Electric GE 0.1088 3.2878 1.1553 172.7190

CBS Corporation CBS 0.2013 5.5533 2.2906 165.6725

Walt Disney DIS 0.1380 2.2760 1.1164 112.5801

Halliburton Company HAL 0.1964 5.5976 3.1641 205.0786

Johnson & Johnson JNJ 0.0668 0.9579 0.5167 49.6791

McDonald’s MCD 0.0867 1.3879 0.7031 124.4459

Pfizer PFE 0.1620 1.9173 1.1373 64.0720

Verizon Communications VZ 0.1229 1.8900 0.9336 108.7225

Wal-Mart WMT 0.1134 1.4193 0.7576 73.2718

Table 2: Summary statistics of realized variances computed with 5-minute returns of S&P500 and NYSE stocks data used in the empirical

analysis in Section (3).

C Leverage

Corsi and Renò (2012) pointed out the importance of considering leverage effects when modeling realized volatility.

In particular, they found that the forecasting performance of the HAR can be significantly improved by introducing

a persistent leverage effect with an approximate long-memory behavior similar to that of volatility itself.

Let rt denote the log-return at time t. The LHAR model extends the standard HAR to also describe the
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asymmetric dependence between volatility and returns, with future volatility being more responsive to negative

returns:

RV lt+1 =β0 + β1RV
l
t + β2RV

l
t−1|t−4 + β3RV

l
t−5|t−21

+ γ1r
−
t + γ2r

−
t−1|t−4 + γ3r

−
t−5|t−21 + ηt+1

(C.1)

where rt1|t2 is computed as RVt1|t2 and r−t1|t2 = min(rt1|t2 , 0).

Since returns are observable, the leverage terms in eq. (C.1) can be easily accounted for in our framework. In

particular, the SHAR can be written as:

RV lt+1 =β0,t+1 + β1,t+1RV
l
t + β2,t+1RV

l
t−1|t−4 + β3,t+1RV

l
t−5|t−21

+ γ1r
−
t + γ2r

−
t−1|t−4 + γ3r

−
t−5|t−21 + ηt+1

(C.2)

ηt+1 ∼ NID(0, qt+1). Model (C.2) can be handled as the SHAR, provided that one includes the leverage terms in

the conditional mean µt|t−1 in eq. (24). The additional parameters λ1, λ2, λ3 are part of Θ, the vector of static

parameters that is estimated by maximum likelihood. In the HARK and SHARK models, the new transition equation

becomes

αt+1 = c
(l)
t + Ttαt + ηt, ηt ∼ NID(0, Qt) (C.3)

where:

c
(l)
t = ct +


γ1r
−
t + γ2r

−
t−1|t−4 + γ3r

−
t−5|t−21

0
...

0

 (C.4)

Estimation proceeds in the same way as described in Section (2.4) and (2.6), provided that one replaces ct with c
(l)
t

in the Kalman filter recursions. As in the SHAR, the leverage parameters are estimated by maximum likelihood,

together with the remaining parameters. The impact of leverage on volatility forecasting with the HARlog has

been investigated in the econometric literature (see e.g. Corsi and Renò 2012) and produces similar forecasting

improvements when implemented in our framework.

D Kalman filter recursions for the HARK model

We first introduce some notation. The n-dimensional identity matrix is denoted as In. We use ⊗ to denote the

Kronecker product between two matrices. The operator vec(·), applied to an m × n matrix A, stacks the columns

of A into an mn column vector while the operator vech(·), applied to a symmetric n × n matrix B, stacks all the

n(n − 1)/2 upper (or lower) diagonal elements into a column vector. We also introduce the commutation matrix

Cmn, i.e. the mn×mn matrix such that CmnvecA = vecA′ for every m× n matrix A. The derivative of an m× n

matrix function F (X) with respect to the p × q matrix X is defined as in Abadir and Magnus (2005), i.e. as the

mn× pq matrix computed as ∂vec(F (X))/∂vec(X)′.

Let Ft, at, Pt defined as in Section (2.4). The Kalman filter recursions for model (14), (15) are given by:

vt = RVt − Zat

at+1 = c+ Tat +Ktvt

Ft = ZPtZ
′ + ht

Pt+1 = TPt(T −KtZ)′ +Q
(D.1)

5



where Kt = TPtZ
′F−1t .

E Computation of ∇t and It|t−1 in the SHAR model

It is convenient to introduce the auxiliary vector of time-varying parameters:

f̃t =
(
β0,t, β1,t, β2,t, β3,t, qt

)′
(E.1)

The latter is related to ft by the following link-function:

f̃t = L(ft) =
[
f1t , f

2
t , f

3
t , f

4
t , exp(f5t )

]′
(E.2)

The Jacobian of the transformation is:

JL =
∂f̃t

∂ft
′ =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 exp(f5t )


(E.3)

Note that, using the chain rule, ∇t and It|t−1 can be expressed as:

∇t = JL∇̃t, It|t−1 = JLĨt|t−1JL (E.4)

where:

∇̃t =

[
∂log p(RVt|f̃t,Bt−1,Θ)

∂f̃ ′t

]′
, Ĩt|t−1 = E[∇̃t∇̃′t] (E.5)

Thus, it is simpler to compute ∇̃t and Ĩt|t−1 and then using eq. (E.5) to recover ∇t and It|t−1. By direct

differentiation of the conditional log-likelihood (23), we have:

∇̃t =



ηt
qt

ηt
qt
RVt−1

ηt
qt
RVt−2|t−5

ηt
qt
RVt−6|t−22

− 1
2qt

+ 1
2
η2t
q2t


(E.6)

where ηt = RVt − µt|t−1. The information matrix Ĩt|t−1 is easily computed by noting that Et|t−1[η2t ] = qt and

Et|t−1[η4t ] = 3q2t . We have:

Ĩt|t−1 =

1

qt



1 RVt−1 RVt−2|t−5 RVt−6|t−22 0

RVt−1 RV 2
t−1 RVt−1RVt−2|t−5 RVt−1RVt−6|t−22 0

RVt−2|t−5 RVt−1RVt−2|t−5 RV 2
t−2|t−5 RVt−2|t−5RVt−6|t−22 0

RVt−6|t−22 RVt−1RVt−6|t−22 RVt−2|t−5RVt−6|t−22 RV 2
t−6|t−22 0

0 0 0 0 1
2qt


(E.7)

Note that It|t−1 has rank 2. In order to compute the scaling matrix St we thus take the Moore–Penrose inverse.
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F Kalman filter recursions for the SHARK model

Let Ft, at+1 and Pt+1 as in Section (D). Then, the Kalman filter recursions for model (27), (28) are given by:

vt = RVt − Zat

at+1 = ct+1 + Tt+1at +Ktvt

Ft = ZPtZ
′ + ht

Pt+1 = Tt+1Pt(Tt+1 −KtZ)′ +Qt+1

(F.1)

where Kt = Tt+1PtZ
′F−1t . The difference with the Kalman filter recursions in Section (D) is that now ct, Tt and Qt

are time-varying and are updated at each step using the eq. (30) in the paper.

G Computation of v̇t and Ḟt in the SHARK model

As done with the SHAR, in order to obtain positive variances we introduce the auxiliary vector of time-varying

parameters:

f̃t = L(ft) =
[
f1t , f

2
t , f

3
t , f

4
t , exp(f5t )

]′
(G.1)

The Jacobian JL is the same as in eq. (E.3) and eq. (E.4) still holds. Consequently, we first compute ∇̃t and Ĩt|t−1
as defined in eq. (E.5). They have the same form as in eq. (32), but now v̇t = ∂vt/∂f̃

′
t and Ḟt = ∂vec(Ft)/∂f̃

′
t denote

derivatives with respect to f̃t. Following Delle Monache et al. (2016), they can be computed through the following

set of equations:

v̇t = −Zȧt (G.2)

Ḟt = (Z ⊗ Z)Ṗt (G.3)

ȧt = ċt + (a′t−1 ⊗ In)Ṫt + vt−1K̇t−1 (G.4)

Ṗt = (In ⊗ TtPt−1)Cn,nṪt + (TtPt−1 ⊗ In)Ṫt − (Kt−1ZPt−1 ⊗ In)Ṫt

− (In ⊗ TtPt−1Z ′)K̇t−1 + Q̇t

(G.5)

K̇t−1 = (F−1t−1ZPt−1 ⊗ In)Ṫt (G.6)

where ċt = ∂at
∂f̃ ′

t

is a n× 5 matrix and Ṫt = ∂vecTt

∂f̃ ′
t

, Q̇t = ∂vecQt

∂f̃ ′
t

are n2 × 5. They are selection matrix of the form:

{Ȧt}i,j =

1, if {vecAt}i = f̃ jt

0, else

(G.7)

where At generically denotes ct, Tt and Qt.
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H Proof of propositions 1 and 2

H.1 Proposition 1

The proof is made by induction on j. First, let us prove the formula for j = 2. We have:

Et[exp(ZRV t+2)] = Et[exp(Z(cl + TlRV t+1 + ηt+1))]

= Et[exp(Z(cl + Tl(cl + TlRV t + ηt) + ηt+1))]

= exp

[
Z((In + Tl)cl + T 2RV t) +

1

2
Z(Ql + TlQlT

′
l )Z
′
]

where we have used the moment generating function of the multivariate normal distribution in the last line. So the

formula is true for j = 2. Now let us assume that it is true for j = k and prove that it is also true for j = k + 1:

Et[exp(ZRV t+k+1)] =

= Et[exp(Z(cl + TlRV t+k + ηt+k))]

= exp(Zcl)Et[exp(ZTlRV t+k)]Et[exp(Zηt+l)]

= exp(Zcl) exp

{
Z
[
(Tl + · · ·+ T kl )cl + T k+1

l RV
l

t

]
+

1

2
Z
[
TlQlT

′
l + · · ·+ T kQl(T

k)′
]
Z ′
}

exp(ZQlZ
′)

where we have used the induction hypothesis to compute exp(ZTlRV t+k). Upon multiplication of the three terms

we get:

Et[exp(ZRV t+k+1)] =

= exp

{
Z
[
(In + · · ·+ T kl )cl + T jl RV

k+1

t

]
+

1

2
Z
[
Ql + · · ·+ T kQl(T

k)′
]
Z ′
}

which is the formula in Proposition 1 for j = k + 1 �

H.2 Proposition 2

The proof follows exactly the same steps as those in Proposition 1. Let us prove the formula for j = 2. We have:

Et[exp(Zαt+2)] = Et[exp(Z(c+ Tαt+1 + ηt+1))]

= exp(Zc)Et[exp(ZTαt+1)]Et[exp(Zηt+1)]

where the last step follows from independence between αt+1 and ηt+1. Using the fact that αt+1|Ft ∼ N(at+1, Pt+1),

we have:

Et[exp(Zαt+2)] =

= exp(Zc) exp

(
ZTat+1 +

1

2
ZTPt+1T

′Z ′
)

exp(ZQZ ′)

= exp

[
Z(c+ Tat+1) +

1

2
Z(TPt+1T

′ +Q)Z ′
]
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which is the formula in Proposition 2 for j = 2. We now assume that the formula is true for j = k and prove that it

is also true for j = k + 1:

Et[exp(Zαt+k+1)] =

= Et[exp(Z(c+ Tαt+k + ηt+k))]

= exp(Zc)Et[exp(ZTαt+k)]Et[exp(Zηt+k)]

The last term is equal to exp( 1
2ZQZ

′). Based on the induction hypothesis, the second term is given by:

Et[exp(ZTαt+k)] = exp
{
Z
[
(T + · · ·+ T k−1)c+ T kat+1

]
+

1

2
Z
[
T kPt+1(T k)′ + TQT ′ + · · ·+ T k−1Q(T k−1)′

]
Z ′
}

By summing the three exponents we end up with:

Et[exp(ZTαt+k)] = exp
{
Z
[
(In + · · ·+ T k−1)c+ T kat+1

]
+

1

2
Z
[
T kPt+1(T k)′ +Q+ · · ·+ T k−1Q(T k−1)′

]
Z ′
}

which is the formula in Proposition 2 for j = k + 1 �
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Corsi, F., Renò, R., 2012. Discrete-time volatility forecasting with persistent leverage effect and the link with

continuous-time volatility modeling. Journal of Business & Economic Statistics 30 (3), 368–380.

Delle Monache, D., Petrella, I., Venditti, F., 2016. Adaptive state space models with applications to the business

cycle and financial stress. CEPR Discussion Paper (DP11599).

Huang, X., Tauchen, G., 2005. The relative contribution of jumps to total price variance. Journal of Financial

Econometrics 3 (4), 456–499.

Zhang, L., Mykland, P. A., Aı̈t-Sahalia, Y., 2005. A tale of two time scales: Determining integrated volatility with

noisy high-frequency data. Journal of the American Statistical Association 100 (472), 1394–1411.

9


	Simulation study
	Summary statistics of the dataset used in the empirical application
	Leverage
	Kalman filter recursions for the HARK model
	Computation of t and It|t-1 in the SHAR model
	Kalman filter recursions for the SHARK model
	Computation of t and t in the SHARK model
	Proof of propositions 1 and 2
	Proposition 1
	Proposition 2


