Introduction: Neutral lipid-storage disease with myopathy is caused by mutations in PNPLA2, which produce skeletal and cardiac myopathy. We report a man with multiorgan neutral lipid storage and unusual multisystem clinical involvement, including cognitive impairment. Methods: Quantitative brain MRI with voxel-based morphometry and extended neuropsychological assessment were performed. In parallel, the coding sequences and intron/exon boundaries of the PNPLA2 gene were screened by direct sequencing. Results: Neuropsychological assessment revealed global cognitive impairment, and brain MRI showed reduced gray matter volume in the temporal lobes. Molecular characterization revealed a novel homozygous mutation in exon 5 of PNPLA2 (c.714C>A), resulting in a premature stop codon (p.Cys238*). Conclusions: Some PNPLA2 mutations, such as the one described here, may present with an extended phenotype, including brain involvement. In these cases, complete neuropsychological testing, combined with quantitative brain MRI, may help to characterize and quantify cognitive impairment.
Massa, R., Pozzessere, S., Rastelli, E., Serra, L., Terracciano, C., Gibellini, M., et al. (2016). Neutral lipid-storage disease with myopathy and extended phenotype with novel PNPLA2 mutation. MUSCLE & NERVE, 53(4), 644-648 [10.1002/mus.24983].
Neutral lipid-storage disease with myopathy and extended phenotype with novel PNPLA2 mutation
Massa R.
Conceptualization
;
2016-04-01
Abstract
Introduction: Neutral lipid-storage disease with myopathy is caused by mutations in PNPLA2, which produce skeletal and cardiac myopathy. We report a man with multiorgan neutral lipid storage and unusual multisystem clinical involvement, including cognitive impairment. Methods: Quantitative brain MRI with voxel-based morphometry and extended neuropsychological assessment were performed. In parallel, the coding sequences and intron/exon boundaries of the PNPLA2 gene were screened by direct sequencing. Results: Neuropsychological assessment revealed global cognitive impairment, and brain MRI showed reduced gray matter volume in the temporal lobes. Molecular characterization revealed a novel homozygous mutation in exon 5 of PNPLA2 (c.714C>A), resulting in a premature stop codon (p.Cys238*). Conclusions: Some PNPLA2 mutations, such as the one described here, may present with an extended phenotype, including brain involvement. In these cases, complete neuropsychological testing, combined with quantitative brain MRI, may help to characterize and quantify cognitive impairment.File | Dimensione | Formato | |
---|---|---|---|
PNPL.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
437.64 kB
Formato
Adobe PDF
|
437.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.