SAR images from Italian COSMO-SkyMed mission can have a significant impact on the production and updates of land cover maps. However, for the full exploitation of the data and their application to nationwide extensions, robust automatic procedures need to be designed. In this paper we present the preliminary results obtained by the implementation of a processing scheme using COSMO-SkyMed images to provide, and regularly update every six months, land cover maps for the whole Italian territory. Most of the automatic processing is based on Neural Networks (NN) algorithms. In particular PCNN (Pulse Coupled NN) have been considered for change detection purposes while Multi-Layer Perceptrons (MLP) have been used for classifying the pixels belonging to a detected changed area.

Carbone, F., Coletta, A., De Luca, G.f., Del Frate, F., Fasano, L., Schiavon, G. (2016). Automatic generation of frequently updated land cover products at national level using COSMO-SkyMed SAR imagery. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp.3406-3409). 345 E 47TH ST, NEW YORK, NY 10017 USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/IGARSS.2016.7729880].

Automatic generation of frequently updated land cover products at national level using COSMO-SkyMed SAR imagery

Del Frate F.;Fasano L.;Schiavon G.
2016-01-01

Abstract

SAR images from Italian COSMO-SkyMed mission can have a significant impact on the production and updates of land cover maps. However, for the full exploitation of the data and their application to nationwide extensions, robust automatic procedures need to be designed. In this paper we present the preliminary results obtained by the implementation of a processing scheme using COSMO-SkyMed images to provide, and regularly update every six months, land cover maps for the whole Italian territory. Most of the automatic processing is based on Neural Networks (NN) algorithms. In particular PCNN (Pulse Coupled NN) have been considered for change detection purposes while Multi-Layer Perceptrons (MLP) have been used for classifying the pixels belonging to a detected changed area.
36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
chn
2016
The Institute of Electrical and Electronics Engineers, Geoscience and Remote Sensing Society (GRSS)
Rilevanza internazionale
contributo
2016
Settore ING-INF/02 - CAMPI ELETTROMAGNETICI
English
COSMO-SkyMed; Land Cover; Neural Networks; SAR
Intervento a convegno
Carbone, F., Coletta, A., De Luca, G.f., Del Frate, F., Fasano, L., Schiavon, G. (2016). Automatic generation of frequently updated land cover products at national level using COSMO-SkyMed SAR imagery. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp.3406-3409). 345 E 47TH ST, NEW YORK, NY 10017 USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/IGARSS.2016.7729880].
Carbone, F; Coletta, A; De Luca, Gf; Del Frate, F; Fasano, L; Schiavon, G
File in questo prodotto:
File Dimensione Formato  
07729880.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 583.32 kB
Formato Adobe PDF
583.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/242280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact