It is widely believed that the critical properties of several planar lattice systems, like the Eight Vertex or the Ashkin-Teller models, are well described by an effective continuum fermionic theory obtained as a formal scaling limit. On the basis of this assumption several extended scaling relations among their indices were conjectured. We prove the validity of some of them, among which the ones predicted by Kadanoff (Phys Rev Lett 39:903-905, 1977) and by Luther and Peschel (Phys Rev B 12:3908-3917, 1975).

Benfatto, G., Falco, P., Mastropietro, V. (2009). Extended Scaling Relations for Planar Lattice Models. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 292(2), 569-605 [10.1007/s00220-009-0888-z].

Extended Scaling Relations for Planar Lattice Models

BENFATTO, GIUSEPPE;MASTROPIETRO, VIERI
2009-12-01

Abstract

It is widely believed that the critical properties of several planar lattice systems, like the Eight Vertex or the Ashkin-Teller models, are well described by an effective continuum fermionic theory obtained as a formal scaling limit. On the basis of this assumption several extended scaling relations among their indices were conjectured. We prove the validity of some of them, among which the ones predicted by Kadanoff (Phys Rev Lett 39:903-905, 1977) and by Luther and Peschel (Phys Rev B 12:3908-3917, 1975).
dic-2009
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Planar Lattice Models; Renormalization Group; Fermi systems.
http://www.springerlink.com/content/y2148162272965vp/fulltext.pdf
Benfatto, G., Falco, P., Mastropietro, V. (2009). Extended Scaling Relations for Planar Lattice Models. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 292(2), 569-605 [10.1007/s00220-009-0888-z].
Benfatto, G; Falco, P; Mastropietro, V
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
pm5_1.pdf

accesso aperto

Descrizione: Preprint del lavoro pubblicato
Dimensione 272.07 kB
Formato Adobe PDF
272.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/23724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact