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Abstract

It is widely believed that the critical properties of several planar
lattice systems, like the Eight Vertex or the Ashkin-Teller models, are
well described by an effective continuum fermionic theory obtained
as a formal scaling limit. On the basis of this assumption several
extended scaling relations among their indices were conjectured. We
prove the validity of some of them, among which the ones predicted
by Kadanoff [16] and by Luther and Peschel [20].

1 Introduction and main results

Integrable models in statistical mechanics, like the Ising or the Eight ver-
tex (8V) models in two dimensions, provide conceptual laboratories for the
understanding of phase transitions. Integrability is however a rather deli-
cate property requiring very special features, and it is usually lost in more
realistic models.

The principle of universality, phenomenologically quite well verified, says
that the singularities for second order phase transitions should be insensitive
to the specific details of the model. From the theoretical side, a mathemati-
cal justification of universality in planar lattice models is rather difficult to
provide. Only very recently Pinson and Spencer established, see [32, 29], a
form of universality for the 2D Ising model; they added to the Ising Hamil-
tonian a perturbation breaking the integrability and showed that the indices
they can compute are exactly the same as the Ising model ones.
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While the critical indices of the Ising model are expressed by pure num-
bers, there are other lattice models in which some of the critical exponents
vary continuously with the parameters appearing in the Hamiltonian. A cel-
ebrated example is provided by the Eight vertex model, solved by Baxter in
[2]; even though it can be mapped in two Ising models coupled by a quartic
interaction, its critical indices are different from the Ising ones.

Several authors, starting from Kadanoff and collaborators [16, 17, 18] and
Luther and Peschel [20], have argued that many models, like the Askhin-
Teller (AT) model and several others, belongs to the class of universality of
the 8V model. The notion of universality in this case is much more subtle;
it does not mean that the indices are the same for all the models in the
same class (on the contrary, the indices depend on all the details of the
Hamiltonian), rather it means that there are scaling relations between them,
such that all the indices of a single model can be expressed in terms of one
of the indices of the same model.

The notion of universality for models with continuously varying indices
has been deeply investigated over the years, see for instance [18, 27, 28,
33]; it has been pointed out that such models are well described in the
scaling limit by an effective continuum fermionic theory, and on the basis of
this assumption several extended scaling relations between their indices were
derived. While the assumption of a continuum scaling limit description of
planar lattice models is very powerful, it is well known that a mathematical
justification of it is very difficult, see e.g. [31].

The aim of this paper is to provide a mathematical proof of some of the
exact scaling relations derived in the literature for planar lattice models. We
will focus mainly on the 8V and AT models, but, as we shall explain after
the main theorem below, our result can be extended to several other models.

We start from the well known (see [3]) Ising formulation of the 8V and
the AT models. Let Λ be a square subset of Z2 of side L; if x = (x0, x) ∈ Λ
and e0 = (1, 0), e1 = (0, 1), we consider two independent configurations of
spins, {σx = ±1}x∈Λ and {σ′

x = ±1}x∈Λ and the Hamiltonian

111 H(σ, σ′) = HJ(σ) +HJ ′(σ′)− J4V (σ, σ′) , (1)

where J > 0 and J ′ > 0 are two parameters, HJ is the (ferromagnetic) Ising
Hamiltonian in the lattice Λ,

HJ(σ) = −J
∑
j=0,1

∑
x∈Λ

σxσx+ej , (2)

V is the quartic interaction and −J4 is the coupling. In the AT model, J
and J ′ can be different (in which case the model is called anisotropic) and
V = VAT , with (see Fig. 1.1)

VAT (σ, σ
′) =

∑
j=0,1

∑
x∈Λ

σxσx+ejσ
′
xσ

′
x+ej

. (3)
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In the 8V model J = J ′ and V = V8V , with (see Fig. 1.1)

V8V (σ, σ
′) =

∑
j=0,1

∑
x∈Λ

σx+j(e0+e1)σx+e0σ
′
x+j(e0+e1)

σ′
x+e1

. (4)

In this paper we will focus our attention on two observables,

8V AT

Figure 1:s5 : The quartic interaction in the 8V and in the AT case. The gray
and the black square are the same square of the lattice.

Oε
x =

∑
j=0,1

σxσx+ej + ε
∑
j=0,1

σ′
xσ

′
x+ej

, ε = ± , (5)

and their truncated correlations in the thermodynamic limit

corr Gε(x− y) = lim
Λ→∞

⟨Oε
xO

ε
y⟩Λ − ⟨Oε

x⟩Λ⟨O
ε
y⟩Λ , ε = ± , (6)

where ⟨ · ⟩Λ is the average over all configurations of the spins with statistical
weight e−βH(σ,σ′). In the AT model, ⟨O+

x ⟩ is called the energy, while ⟨O−
x ⟩ is

called the crossover; and viceversa in the 8V model, see e.g. [27].
Despite their similarity, an exact solution exists for the 8V model but not

for the AT model. In recent times the methods of fermionic Renormalization
Group (RG) (introduced in [7]; see e.g. [25] for an updated introduction) has
been applied to such models (for J4 small), using the well known represen-
tation of such correlations in terms of Grassmann integrals, see e.g. [30]. It
was proved in [21, 22] that both the 8V and the isotropic (J = J ′) AT sys-
tems have a nonzero critical temperature, Tc, such that, if T ̸= Tc, G

ε(x−y)
decays faster than any power of ξ−1|x− y|, with

ξ−1 ∼ C |T − Tc|ν , as T → Tc . (7)

Moreover, for T → Tc, there are two constants Cε, ε = ±, such that

xpm Gε(x− y) ∼ Cε
|x− y|2xε

, as |x− y| → ∞ , (8)

where x± are critical indices expressed by convergent series in J4. The anal-
ysis in [22] allows to compute the indices ν, x± with arbitrary precision (by
an explicit computation of the lowest orders and a rigorous bound on the
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remainder); however, the complexity of such expansions makes essentially
impossible to see directly from them the scaling relations.

In the case of the anisotropic AT model, it was proven in [13, 14] that
there are two critical temperatures, T1,c and T2,c, and the corresponding
critical indices are the same as those of the Ising model. However as J−J ′ →
0:

tr |T1,c − T2,c| ∼ |J − J ′|xT , (9)

with a transition index, xT , different from 1 if J4 ̸= 0.
In this paper we will prove the following Theorem.

thm1

Theorem 1.1 If the coupling is small enough, the critical indices of the 8V
or AT models verify

2 x− =
1

x+
, (10)

2a ν =
1

2− x+
; (11)

and, in the case of the anisotropic AT model,

3 xT =
2− x+
2− x−

. (12)

Remarks

1. Equation (10) is the extended scaling law first conjectured by Kadanoff
for the AT and 8V models (see eq.(13b) and (15b) of [16]). Eq.(11)
was conjectured by Luther and Peschel in [20] (see eq.(16) and table I
of that paper).

2. The scaling relation (12) was never conjectured before.

3. All the critical indices we consider can be expressed as simple functions
of one of them, in agreement with the general belief.

4. The exact value of the index ν for the Eight Vertex model has been
obtained by Baxter, see (10.12.23b) of [3]; hence the values of x±, which
cannot be computed from the exact solution, can be obtained from (10)
and (11).

5. We have considered just the 8V or the AT models for definiteness, but
our theorem is valid for any Hamiltonian of the form (1), if the quartic
interaction is small enough and verifies some symmetry conditions,
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listed in App. O of [22]; in particular, our result is valid for a generic
interaction of the form

V (σ, σ′) =
∑
j=0,1

∑
x,y∈Λ

v(x− y)σxσx+ejσ
′
yσ

′
y+ej

, (13)

with v(x−y) a rotational invariant short range potential (|v(x−y)| ≤
Ce−κ|x−y|, C, κ positive constants).

6. Our analysis can be extended to a large class of (integrable or non
integrable) quantum spin chains or fermion models known as Luttinger
liquids [15]. For instance in the case of the XY Z spin chain with
a magnetic field, analyzed in [9], calling x− the index appearing in
the oscillating part of the spin-spin correlation along the z direction
(see (1.20) of [9]), and α the index appearing in the decay rate (see
(1.19) of [9]), it is a simple corollary of the proof of Theorem 1.1 that
ν = (2− x−1

− )−1.

7. Several other relations are conjectured in the literature, concerning
critical indices, which are much more difficult to study with our meth-
ods, like the indices of the polarization correlations. New ideas seems
to be required to treat such cases.

The main steps of the proof are the following.
(i) The correlations of the spin models are written in terms of interacting one
dimensional fermion models, whose correlations can be computed in terms
of Grassmann integrals;
(ii) the critical indices are expressed in terms of convergent expansions by
a Renormalization Group analysis of the functional integrals;
(iii) the original theory is shown to be equivalent (in the sense that their
critical indices coincide) to an effective continuum fermionic model, defined
as the formal scaling limit of the original one, provided that the coupling λ∞
of the equivalent model is chosen properly as a function of J4;
(iv) The effective model is expressed in terms of Grassmann integrals which
are identical to the ones appearing in certain Quantum Field Theory (QFT)
models; we take advantage of the Gauge symmetry and of a property called
anomaly non-renormalization, see [23], to exactly compute the correlations
and the critical indices. It turns out that the dependence of the critical
indices on λ∞ is so simple that we can check that the extended scaling
relations are verified.

The proof relies on several results derived in detail in previous papers, in
particular [22, 23, 6]; here the attention is mostly focused on the new techni-
cal points which are required for the proof, and the use of earlier published
results is through precise statements proved elsewhere. The proof of (11) is
at the end of §2.3, while (12) is proved in §2.4; (10), the main result of this
paper, is proved in §4.2.
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2 RG analysis of spin models

sec2

In this section we summarize the analysis given in [22] for the 8V or isotropic
AT model and in [14] for the anisotropic AT model. The correlations of
the AT or 8V models are written in terms of Grassmann integrals and are
analyzed using RG methods. The critical indices x+, x−, ν and xT are
written, in the small coupling region, as model independent convergent series
of a single parameter, λ−∞, as we shall call the asymptotic limit of the
effective coupling on large scale. Notice that λ−∞ is in turn a convergent
series, depending on all the details of the lattice model, of the coupling
J4. Such expansions allow in principle to compute the indices with arbitrary
precision, but the complexity of such expansions makes essentially impossible
to see directly from them the extended scaling relations.

2.1 Fermionic representation of the spin models

The partition function Z(I) of the Ising model with external sources Aj,x,
and periodic conditions at the boundary of Λ is

pf1 Z(I) =
∑
σ

exp
[ ∑

j=0,1
x∈Λ

Ij,xσxσx+ej

]
, (14)

where Ij,x = Aj,x + βJ . It is well known, see [30] or App. A1 of [14], that
Z(I) can be written as sum of Grassman integrals. Let γ = (ε0, ε1), with
ε0, ε1 = ± and let {Hx, H̄x, Vx, V̄x}x∈Λ be a family of Grassmann variables
verifying the γ-boundary conditions, namely

H̄x+(L,0) = ε0H̄x , H̄x+(0,L) = ε1H̄x ,

c31 Hx+(L,0) = ε0Hx , Hx+(0,L) = ε1Hx , (15)

and similar relations for V, V̄ (we are skipping the γ dependence in the H’s
and V ’s). Then we consider the Grassmann functional integral

2.11 Zγ =
∫
dHdV eS(t) , (16)

where the action S(t) is the following function of the parameters t = {tj,x} x∈Λ
j=0,1

and of the Grassmann variables with γ−boundary condition:

16 S(t) =
∑
x∈Λ

[
t0,xH̄xHx+e0 + t1,xV̄xVx+e1

]
+ (17)

+
∑
x∈Λ

[
H̄xHx + V̄xVx + V̄xH̄x + VxHx + VxH̄x +HxV̄x

]
.
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If we choose tj,x = tanh Ij,x and put cj,x = cosh Ij,x, the partition function
(14) can be written in the following way:

17 Z(I) = (−1)|Λ|2|Λ|

∏
j,x

cj,x

∑
γ

(−1)δγ

2
Zγ (18)

where δγ = 1 for γ = (+,+), and δγ = 0 otherwise.
By using (17), the correlation functions (6) of the spin model (1) can be

written as (see §A.1 for details)

⟨Oε
x;O

ε
y⟩
T
Λ =

∂2 ln Z̄(Ā)

∂Āεx∂Ā
ε
y

∣∣∣∣∣
Ā≡0

+ SL(x,y) , (19)

where SL(x,y) is a correction term, vanishing in the thermodynamic limit
(see App. 1), and

25 Z̄(Ā) =
∫
dHdV dH ′dV ′ eS(s)+S(s

′)+2λV+B(Ā) , (20)

s, s′ and λ being parameters independent of j and x (see (170) below), such
that s = tanh(βJ) + O(βJ4), s

′ = tanh(βJ) + O(βJ4) and λ = O(βJ4).
Moreover, the (H, V ) and (H ′, V ′) variables verify antiperiodic boundary
conditions and V is a quartic interaction that, in the AT case, is given by

i1 VAT =
∑
x∈Λ

[
H̄xHx+e0H̄

′
xH

′
x+e0

+ V̄xVx+e1V̄
′
xV

′
x+e1

]
, (21)

while, in the 8V case, is given by

i2 V8V =
∑
x∈Λ

[
H̄xHx+e0V̄

′
xV

′
x+e1

+ V̄x+e0Vx+e0+e1H̄
′
x+e1

H ′
x+e1+e0

]
. (22)

Finally B(Ā) is an interaction with external sources Āεx, given, in the AT
case, by

b1 B(Ā) =
∑
x∈Λ
ε=±

Āεx
[
qε
(
H̄xHx+e0 + V̄xVx+e1

)
+ q′ε

(
H̄ ′

xH
′
x+e0

+ V̄ ′
xV

′
x+e1

)]
+

+
∑
x∈Λ
ε=±

Āεxpε
(
H̄xHx+e0H̄

′
xH

′
x+e0

+ V̄xVx+e1V̄
′
xV

′
x+e1

)
, (23)

while, in the 8V case, it is given by

b2 B(Ā) =
∑

x∈Λ,ε=±
Āεx

[
qε
(
H̄xHx+e0 + V̄x+e0Vx+e0+e1

)
+

+q′ε
(
H̄ ′

x+e1
H ′

x+e1+e0
+ V̄ ′

xV
′
x+e1

)]
+ (24)

+
∑
x∈Λ
ε=±

Āεxpε
(
H̄xHx+e0V̄

′
xV

′
x+e1

+ V̄x+e0Vx+e0+e1H̄
′
x+e1

H ′
x+e1+e0

)
,
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with qε, q
′
ε and pε parameters independent of j and x, such that qε =

1 − tanh(βJ) + O(βJ4), q
′
ε = ε[1 − tanh(βJ ′)] + O(βJ4) and pε = O(βJ4).

Notice the crucial difference between (14) and (20); in the second case also
quartic monomials appears in the exponent, while in the first case only
quadratic terms appears. In other words, the Ising model correspond to
a non-interacting fermionic theory, while the model (1) is mapped into an
interacting fermionic system.

2.2 The case J = J ′

We consider first the case J = J ′. The Grassmann integral (20) is not very
convenient for the RG analysis, but it can be properly rewritten, by a suitable
change of variables in the Grassmann algebra, in a much better form (see
[22, 14] and App. A for details), such that the analogy of the above functional
integral with a fermionic (Euclidean) Quantum Field Model is clearer.

Let D be the set of k’s such that k0 = 2π
L
(n0 +

1
2
) and k1 = 2π

L
(n1 +

1
2
),

for n0, n1 = −L
2
, . . . , L

2
− 1, and L and even integer. Then the functional

integral (20) can be written as (see §A.2 for details)

Z̄(Ā) =
1

N

∫
P (dψ)Pχ(dχ) e

Q(ψ,χ)+V(ψ,χ)+B(Ā) , (25)

where N is a normalization constant, P (dψ) is the (Grassmannian) Gaussian
measure with propagator

g(x) =
1

L2

∑
k∈D

e−ikxT−1(k) , (26)

with

TKK T (k) = u

 i sin k0 + sin k1 −iµ(k)

iµ(k) i sin k0 − sin k1

 , (27)

u = tanh(βJ) +O(βJ4),

mukk µ(k) = (cos k0 + cos k1 − 2) + 2
1−

√
2 + u

u
, (28)

Pχ(dχ) is the Gaussian measure with propagator gχ(x), which is obtained
from g(x) by replacing T (k) with T χ(k), T χ(k) being the matrix obtained
from T (k) by substituting µ(k) with

sigc µχ(k) = (cos k0 + cos k1 − 2) + 2
1 +

√
2 + u

u
. (29)

8



The interaction with the external source is given by

BA B(Ā) = i
∑
x∈Λ

q+Ā
+
x [ψ

+
x,+ψ

−
x,− − ψ+

x,−ψ
−
x,+ + χ+

x,+χ
−
x,− − χ+

x,−χ
−
x,+] + (30)

+i
∑
x∈Λ

q−Ā
−
x [ψ

+
x,+ψ

+
x,− + ψ−

x,+ψ
−
x,− + χ+

x,+χ
+
x,− + χ−

x,+χ
−
x,−] +RB(Ā) ,

where RB(Ā) contains terms either quartic in the fields or quadratic with
derivatives, whose explicit form (not essential for our purposes) can be ob-
tained by performing the changes of variables explained in App. A). More-
over

Q(ψ, χ) = − 1

|Λ|
∑
k∈D

∑
ω,ω′

[ψ̂+
k,ωχ̂

−
k,ω′ + χ̂+

k,ωψ̂
−
k,ω′ ]Qω,ω′(k) , (31)

where Q(k) is a matrix which vanishes at k = 0. Finally, the quartic self
interaction is given by

int1 V(ψ, χ) = λ
∑
x∈Λ

[
ψ+
x,+ψ

+
x,−ψ

−
x,+ψ

−
x,− + χ+

x,+χ
+
x,−χ

−
x,+χ

−
x,−

]
+

+v(ψ, χ) +RV (ψ, χ) , (32)

where v(ψ, χ) is a quartic interaction depending both on ψ and χ, which
has a different expression in the AT and 8V models, and RV (ψ, χ) is sum
of quartic monomials with at least a derivative; the explicit form for such
expressions can again be obtained by performing the changes of variables
explained in App. A).

If J > 0 and J4 is any real number, u is a strictly increasing function of
tanh(βJ) and has range (0, 1), as one can check by using the definition of
s, see (170). On the other hand, detT (k) = 0 only if k = 0 and µ(k) = 0;
hence, g(x) has a singularity at u = uc =

√
2− 1, which is an allowed value;

moreover, if β|J4| ≪ 1 (as we shall suppose in the following), u = tanh(βJ)+
O(βJ4). Since we expect that the interaction will move this singularity,
it is convenient to modify the interaction by adding a finite counterterm
iν1

1
L2

∑
ω,k ωψ̂

+
k,ωψ̂

−
k,−ω, which is compensated by replacing, in the matrix

T (k), µ(k) with

µ1(k) = (cos k0 + cos k1 − 2) + 2(1− u∗

u
) , u∗ =

√
2− 1− ν1 . (33)

Let us call T1(k) the new matrix and P1(dψ) the corresponding measure; we
get

2.15 Z̄(Ā) =
1

N1

∫
P1(dψ)Pχ(dχ) e

Q(ψ,χ)+V(1)(ψ,χ)+B(Ā) , (34)

where

V(1)(ψ, χ) = iν1
1

L2

∑
ω,k

ωψ̂+
k,ωψ̂

−
k,−ω + V(ψ, χ) , (35)
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and ν1 has to be determined so that the interacting propagator has an in-
frared singularity at u = u∗; the critical temperature is uniquely determined
by the value of u∗.

Let us now remark that detT χ(k) is strictly positive for any k, as one
can easily see by using the fact that u ∈ (0, 1). Hence, if we define

ψ̃+ = ψ+QT−1
χ , ψ̃− = T−1

χ Qψ− , (36)

the change of variables χ+ → χ+ + ψ̃+, χ− → χ− + ψ̃−, allows us to rewrite
(34) in the form

2.15a Z̄(Ā) =
1

N

∫
PZ1,µ1(dψ)Pχ(dχ) e

V(1)(ψ,χ−ψ̃)+B̃(Ā) , (37)

where B̃(Ā) is the functional obtained from B(Ā) by replacing χ with χ− ψ̃
and PZ1,µ1(dψ) is the Gaussian measure with propagator

lau g(x) =
1

L2

∑
k∈D

e−ikx(T (1))−1(k) , (38)

where T (1)(k) = T (k)− Q(k)T−1
χ Q(k). It is also convenient to perform the

trivial change of variables

ψ̂+
k,ω → −iωψ̂+

k̃,ω
, ψ̂−

k,ω → ψ̂−
k̃,ω

, k = (k0, k1) , k̃ = (k1, k0) . (39)

Hence, by an explicit calculation of Q(k) and using the identity u∗/u =
1− µ1(0)/2, one can see that T (1)(k) is the matrix

cov1 Z1C1(k)
(−i sin k0 + sin k1 + µ+,+(k) −µ1 − µ+,−(k)

−µ1 − µ+,−(k) −i sin k0 − sin k1 + µ−,−(k)

)
(40)

with C1(k) = 1, µ1 = 2µ1(0)/(2 − µ1(0)) and Z1 = u∗; moreover µ+,+(k) =
−µ−,−(k)

∗ is an odd function of k of the form µ+,+(k) = 2µ1(0)(−i sin k0 +
sin k1)/(4− 2µ1(0)) +O(|k|3), while µ+,−(k) is a real even function, of order
|k|2, which vanishes only at k = 0. Finally, detT (1)(k) ≥ C(2 − cos k0 −
cos k1), so that PZ1,µ1(dψ) has the same type of infrared singularity as P1(dψ).

The fact that detTχ(k) is strictly positive implies that gχ(x) is an ex-
ponential decaying function; hence, we can safely perform the integration
over the field χ in (37). The result can be written in the following form (see
Lemma 1 of [22])

3.1 Z̄(Ā) ≡ eS(Ā) =
∫
PZ1,µ1(dψ)e

L2N (1)+V̄(1)(Z1ψ)+B(1)(Ā) , (41)

whereN (1) is a constant and the effective potential V̄(1)(ψ) can be represented
as

3.2aaa V̄(1) =
∑
n≥1

∑
α,ω,ε

∑
x1,..,xn

Wω,α,ε,2n(x1, ..,x2n)∂
α1ψε1x1,ω1

...∂α2nψε2nx2n,ω2n
. (42)
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The kernels Wω,α,ε,2n in the previous expansions are analytic functions of λ
and ν1 near the origin; if we suppose that ν1 = O(λ), their Fourier transforms
satisfy, for any n ≥ 1, the bounds, see [22],

|Ŵα,ω,ε,2n(k1, ...k2n−1)| ≤ L2Cn|λ|n . (43)

A similar representation can be written for the functional of the external field
B(1)(Ā). As explained in detail in [22], the symmetries of the two models
we are considering imply that, in the r.h.s. of (42), there are no local terms
quadratic in the field, which are relevant or marginal, except those which are
already present in the free measure.

2.3 Multiscale analysis

sec2.3

We briefly recall here the analysis in [22] (see also [7, 8]). The integration
in (41) can be done by iteratively integrating the fields with decreasing mo-
mentum scale and by moving to the free measure all the marginal terms
quadratic in the field. We introduce a scaling parameter γ = 2, a decompo-
sition of the unity 1 = f1+

∑0
h=−∞ fh(k), with fh(k) a smooth function with

support {γh−1π/4 ≤ |k| ≤ γh+1π/4}, and the corresponding decomposition
of the field ψ =

∑1
j=−∞ ψ(j). If the fields ψ(1), .., ψ(h+1) are integrated, we get

th1 eS(Ā) = eS
(h)(Ā)

∫
PZ̄h,µh(dψ

(≤h))eV
(h)(

√
Zhψ

(≤h))+B(h)(
√
Zhψ

(≤h),Ā) , (44)

where ψ(≤h) =
∑h
j=−∞ ψ(j) and PZ̄h,µh(dψ) is the Gaussian fermionic measure

with the propagator obtained from (38) by replacing in (40) C1(k) with
Ch(k) = [

∑h
k=−∞ fh(k)]

−1, µ1 with µh, Z1 with the function Z̄h(k) (to be

defined below) and the functions µσ,σ′(k) with similar functions µ
(h)
σ,σ′(k);

finally, the constant Zh, which rescale the field, is given by Zh = Z̄h(0).
The effective interaction V(h)(ψ) is a sum over monomials in the Grass-

mann variables and we define a localization operator (see e.g. §4 of [22]) as

5.8 LV (h)(ψ) = (−mh + γhnh)F
(h)
ν + lhF

(h)
λ − zhF

(h)
z , (45)

where mh, nh, zh and lh are suitable real numbers,

2.112 F (h)
ν =

1

L2

∑
ω

∑
k

ψ̂
(≤h)+
k,ω ψ̂

(≤h)−
k,−ω , (46)

F (h)
z =

1

L2

∑
ω

∑
k

(−i sin k0 + ω sin k1)ψ̂
(≤h)+
k,ω ψ̂

(≤h)−
k,−ω , (47)

F
(≤h)
λ =

1

L8

∑
k1,...,k4

ψ̂
(≤h)+
k1,+

ψ̂
(≤h)+
k3,− ψ̂

(≤h)−
k2,+

ψ̂
(≤h)−
k4,− δ(k1 − k2 + k3 − k4) .
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Moreover we define

LB(h)(
√
Zhψ

(≤h), Ā) =
∑
ε,x

Z
(ε)
h ĀεxO

(≤h)ε
x , (48)

where

curr O(≤h)+
x = ψ

(≤h)+
x,+ ψ

(≤h)−
x,− + ψ

(≤h)+
x,− ψ

(≤h)−
x,+ , (49)

O(≤h)−
x = i[ψ

(≤h)+
x,+ ψ

(≤h)+
x,− + ψ

(≤h)−
x,+ ψ

(≤h)−
x,− ] .

We now move to the fermionic measure the terms proportional to mh and zh
in (45) and we rescale the fields so that

eS(Ā) = eS
(h)(Ā)+L2th

∫
PZ̄h−1,µh−1

(dψ(≤h))

eV̄
(h)(

√
Zh−1ψ

(≤h))+B̄(h)(
√
Zh−1ψ

(≤h),Ā) , (50)

with th a normalization constant and

Z̄h−1(k) = Zh(1 + zhC
−1
h (k)) , µh−1 =

Zh
Z̄h−1(k)

[µh(k) +mhC
−1
h (k)] . (51)

The renormalized potential V̄(h)(ψ) can be written as

5.8a V̄(h)(ψ) = γhνhF
(h)
ν + λhF

(h)
λ +R(h)(ψ) , (52)

with νh = nh(Zh/Zh−1) and λh = lh(Zh/Zh−1)
2; R(h)(ψ) is a sum over mono-

mials similar to (42), with 2n+α1+..+α2n > 4. Finally, B̄(h)(
√
Zh−1ψ

(≤h), Ā) =
B(h)(

√
Zhψ

(≤h), Ā). The field ψ(h) is integrated and the procedure can be it-
erated. The above integration procedure is done till the scale h∗ defined as
the maximal j such that γj ≤ |µj|, and the integration of the fields ψ(≤h∗)

can be done in a single step. Roughly speaking, h∗ defines the momentum
scale of the mass.

Notice that the propagator of the field ψ(≤h) can be written, for h ≤ 0,
as

ffg g(≤h)(x,y) = g
(≤h)
T (x,y) + r(≤h)(x,y) , (53)

where

ombo g
(≤h)
T (x,y) =

1

L2

∑
k∈D

e−ik(x−y) 1

Zh
T−1
h (k) , (54)

Th(k) = Ch(k)
(−ik0 + k1 −µh

µh −ik0 − k1

)
, (55)

and, for any positive integer M ,

|r(≤h)(x,y)| ≤ CM
γ2h

1 + (γh|x− y|M)
. (56)
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The propagator g
(h)
T (x,y) verifies a similar bound with γh replacing γ2h. A

similar decomposition can be done for g(h)(x,y).
The definition of the localization operator L selects in V(h),B(h) the terms

with positive or vanishing scaling dimension, which is given, for the mono-
mials with n ψ-fields and m A-fields, by

sc D = 2− n

2
−m . (57)

In the RG language, the terms with positive or vanishing dimension are
called relevant or marginal terms, respectively. Notice that a priori many
other possible local marginal or relevant terms could be generated in the RG
integration, with respect to the one listed in (45); however these terms are
absent, thanks to the symmetries of the problem, as proved in [22], App. F
(see also [14], §A2.2).

The outcome of the above procedure is that the kernels in V̄(j) and B̄(j) are
analytic functions of the running coupling constants λk, νk, k ≥ j, provided
that supk≥j(|λk| + |νk|) is small enough, see [22] and §3 of [9]. The running
couplings λj (which, by construction, are the same in the massless µ = 0 or
in the massive µ ̸= 0 case, see [13]), satisfy a recursive equation of the form

bb λj−1 = λj + β
(j)
λ (λj, ..., λ0) + β̄

(j)
λ (λj, νj; ...;λ0, ν0) , (58)

where β
(j)
λ , β̄

(j)
λ are µ-independent and expressed by a convergent expansion

in λj, νj.., λ0, ν0; moreover β̄
(j)
λ vanishes if at least one of the νk is zero.

The running coupling λj stays close to λ for any j as a consequence of the
following property, called vanishing of the Beta function, which was proved
in Theorem 2 of [11]; for suitable positive constants C and ϑ < 1:

beta |β(j)
λ (λj, ..., λj)| ≤ C|λj|2γϑj . (59)

Indeed, it is possible to prove that, for a suitable choice of ν1 = O(λ),
νj = O(γϑjλ̄j), if λ̄j = supk≥j |λk|, and this implies, by the short memory

property (see for instance A4.6 of [13]), β̄
(j)
λ = O(γϑjλ̄2j) so that the sequence

λj converges, as j → −∞, to a smooth function λ−∞(λ) = λ + O(λ2), such
that

2.42a |λj − λ−∞| ≤ Cλ2γϑj . (60)

Moreover

ffg1
Zj−1

Zj
= 1 + β(j)

z (λj, ..., λ0) + β̄(j)
z (λj, νj; .., λ0, ν0) , (61)

with β̄(j)
z vanishing if at least one of the νk is zero so that, by using the bound

νj = O(γϑjλ̄j) and the short memory property, β̄(j)
z = O(λjγ

ϑj). Finally

lau11 β(j)
z (λj, ..., λ0) = βz(λ−∞) +O(λγϑj) , (62)
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where the last identity follows from (60) and the short memory property. An
important point is that the function βz(λ−∞) is model independent. Similar

equations hold for Z
(±)
h , µh, with leading terms again model independent,

that is
lau11a β

(j)
± (λj, ..., λ0) = β±(λ−∞) +O(λγϑj) . (63)

By an explicit computation and (62), (63), there exist η+(λ−∞) = c1λ−∞ +
O(λ2−∞), η−(λ−∞) = −c1λ−∞ + O(λ2−∞), ηµ(λ−∞) = c1λ−∞ + O(λ2−∞) and
ηz(λ−∞) = c2λ

2
−∞ + O(λ3−∞), with c1 and c2 strictly positive, such that, for

any j ≤ 0,

lau12 | logγ(Zj−1/Zj)− ηz(λ−∞)| ≤ Cλ2γϑj , (64)

| logγ(µj−1/µj)− ηµ(λ−∞)| ≤ C|λ|γϑj,

| logγ(Z
(±)
j−1/Z

(±)
j )− η±(λ−∞)| ≤ Cλ2γϑj .

The critical indices are functions of λ−∞ only, as it is clear from (62); more-
over from (6.28) and (5.4) of [22], the indices x± appearing in (8) are such
that

pppp3 x± = 1− η± + ηz , ηµ = η+ − ηz = 1− x+ . (65)

When the limit µ→ 0 is taken (after the limit L→ ∞, so that all the Zγ,γ′
have the same limit), the multiscale integration procedure implies the power
law decay of the correlations given by (8).

If µ ̸= 0 (that is, if the temperature is not the critical one), the corre-
lations decay faster than any power with rate proportional to µh∗ , where, if
[x] denotes the largest integer ≤ x, h∗ is given by

2.45c h∗ =

[
logγ |µ|
1 + ηµ

]
, (66)

which implies, together with (65), the identity (11) of Theorem 1.1.

2.4 The anisotropic Ashkin-Teller model

s2.4ss

In order to derive (12), we briefly recall the analysis of the anisotropic Ashkin-
Teller model in [13, 14] with J ̸= J ′. We still obtain an expression similar
to (34), the main difference being that (see (182) below) P1(dψ) contains in

the exponents also terms of the form ψε(≤h)x,ω ψ
ε(≤h)
x,−ω , and the same is true for

Pχ(dχ). The integration procedure is similar to the one in §2.3, but we have
to substitute the Grassmann integration PZh,µh(dψ

(≤h)) in (44) with a new
measure PZh,µh,σh(dψ

(≤h)), where µh and σh are the constants multiplying,
respectively, the quadratic mass terms

2
∑
ω=±

ψ(≤h)+
x,ω ψ

(≤h)−
x,−ω and − 2i

∑
ε=±

ψ
(≤h)ε
x,+ ψ

(≤h)ε
x,− . (67)
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One can see that

| logγ(µj−1/µj)− ηµ(λ−∞)| ≤ Cλ2γϑj ,

| logγ(σj−1/σj)− ησ(λ−∞)| ≤ Cλ2γϑj . (68)

Hence, since the two mass terms are clearly proportional, respectively, to the
operators O+ and O−, we find that

ηµ = η+ − ηz , ησ = η− − ηz . (69)

It turns out that the difference of the critical temperatures scales as |J−J ′|xT
where xT , see (5.26) of [13] (where the indices are defined with a different
sign and the definitions of µh and σh are exchanged), is given by

xT =
1 + ηµ
1 + ησ

, (70)

which implies (12), since ηµ = 1− x+ and ησ = 1− x−.

3 Equivalence with a continuum model

sec3

In this section we show that the spin model (1) is equivalent, for the purpose
of computing the long distance behavior of the correlations we are consider-
ing, to a fermionic theory defined as the formal scaling limit of the original
one plus an ultraviolet regularization; more exactly, we prove that the crit-
ical indices x+, x−, ν and xT of the spin model (1) are equal to the indices
of a fermionic theory provided that the bare coupling λ∞ of the new theory
is properly chosen as a suitable function of the parameters of the 8V or AT
models. The new fermionic theory has correlations expressed by Grassmann
integrals which are identical to the ones appearing in certain Quantum Field
Theory models; in particular it verifies extra Gauge symmetries with respect
to the original spin Hamiltonian (1).

3.1 The model

sec3.1

The continuum (or QFT) model is defined as the limit N → ∞, followed by
the limit −l → ∞, to be called the removed cutoff limit, of a model with an
infrared γl and an ultraviolet γN momentum cut-off, −l, N ≫ 0. This model
is expressed in terms of the following Grassmann integral

th1111 eWN (A,J,η) =
∫
P (dψ[l,N ]) exp

{
V(N)(ψ[l,N ]) +

∑
ε

∫
dxAεxOε,x+ (71)

+
∑
ω

∫
dx [Jx,ωψ

[l,N ]+
x,ω ψ[l,N ]−

x,ω + ψ+[l,N ]
x,ω η−x,ω + η+x,ωψ

[l,N ]−
x,ω ]

}
,
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where x ∈ Λ̃, a square subset of R2 of size |Λ̃| ≤ γ−2l, O+
x and O−

x are defined

in (49) and P (dψ[l,N ]) is a Gaussian measure with propagator g
[l,N ]
T (x,y)

given by (54) with µh = 0, Zh = 1 and C−1
h (k) replaced by C−1

l,N(k) =∑N
k=l fk(k); moreover η±x are external fermionic fields and Aεx, Jx,ω are ex-

ternal bosonic fields. The interaction is

gjhfk V(N)(ψ) =
λ∞
2

∑
ω

∫
dx
∫
dyvK(x− y)ψ+

x,ωψ
+
y,−ωψ

−
x,ωψ

−
y,−ω , (72)

where K < N and vK(x− y) is given by

vK(x− y) =
1

L2

∑
p

χ0(γ
−Kp)eip(x−y) , (73)

χ0(p) being a smooth function with support in {|p| ≤ 2} and equal to 1 for
{|p| ≤ 1}. The correlation functions are found by making suitable derivatives
with respect to the external fields Ax, Jx, ηx and setting them equal to zero.
We considerK fixed, for exampleK = 0, so that no ultraviolet regularization
is needed, as we shall see, when we take the limit N → ∞.

We shall study the functional WN(A, J, η) by performing a multiscale
integration of (71); we have to distinguish two different regimes: the first
regime, called ultraviolet, contains the scales h ∈ [K+1, N ], while the second
one contains the scales h ≤ K, and is called infrared.

3.2 The ultraviolet integration

sec3.2

We describe how to control the integration of the ultraviolet scales, in order
to remove the ultraviolet cut-off N → ∞. For simplicity, we shall only
consider the case A = η = 0, but the result is valid for the full problem (see
also the remark at the end of this section).

Assume that the fields ψ(N), ψ(N−1), ..., ψ(h+1) are integrated so that

th1111a eWN (0,J,0) = eS
(h)(J)

∫
P (dψ[l,h]) exp

{
V(h)(ψ[l,h]) + B(h)(ψ[l,h], J)

}
(74)

where V(h) + B(h) is sum of integrated monomials in m ψ+
xi,ωi

variables,
i = 1, . . . ,m, m ψ−

yi,ωi
variables and n Jzj ,ω′

j
external fields, j = 1, . . . , n,

multiplied by suitable kernels W
(n;2m)(h)
ω′;ω (z;x,y). The scaling dimension is

again (57), and, as in §2.3, we define a localization operator on the terms
with positive or vanishing scaling dimensions which, as in the previous case,
are the terms with (2m,n) = (2, 0) or (4, 0) or (2, 1). Notice however that
in this case the localization operation is defined as the identity on the rel-
evant or marginal terms, that is W (0;2)(h)

ω , W
(1;2)(h)
ω′;ω and W

(0;4)(h)
ω,ω′ , while it

annihilates, as always, all the other contributions to the effective potential.
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These kernels W
(n;2m)(h)
ω′;ω (z;x,y) are represented as power expansions in

the running coupling functionsW (0;2)(k)
ω ,W

(1;2)(k)
ω′;ω andW

(0;4)(k)
ω,ω′ , k ≥ h, whose

size is estimated by the L1 norm, as well as the kernels themselves. Of
course, since the kernels may contain delta functions, we extend, as usual,
the definition of L1 norm, by treating the delta as a positive funcion. Hence,
we define

norm ∥W (n;2m)(k)
ω′;ω ∥ def= 1

|Λ̃|

∫
dzdxdy

∣∣∣W (n;2m)(k)
ω′;ω (z;x,y)

∣∣∣ (75)

and we prove the following theorem.

t3.2

Theorem 3.1 If λ∞ is small enough, there exist two constants C1 > 1 and
C2, such that, if K ≤ h ≤ N , the relevant or marginal contributions to the
effective potential satisfy the bounds:

hb1 ∥W (0;2)(h)
ω ∥ ≤ C1|λ∞|γhγ−2(h−K) , (76)

hb2 ∥W (1;2)(h)
ω′;ω − δ2δω,ω′∥ ≤ C2|λ∞|γ−(h−K) , (77)

hb3 ∥W (0;4)(h)
ω,ω′ − λ∞vδ4δω,−ω′∥ ≤ C2|λ∞|2γ−(h−K) , (78)

where δ2(z;x,y) ≡ δ(z−x)δ(z−y) and vδ4(x1,x2,y1,y2) ≡ δ(x1−y1)vK(x1−
x2)δ(x2 − y2).

Before proving the theorem, notice that, as for the multiscale analysis
in §2.3, the fact that the running coupling functions are small for λ∞ small
enough (as it follows by the bounds (76), (77), (78)) implies the following
standard “dimensional” bound for all other kernels with negative scaling
dimension, for λ∞ small enough, see e.g. App. A of [23]:

pc1 ∥W (n;2m)(k)
ω′;ω ∥ ≤ Cn+dn,m|C1λ∞|dn,mγk(2−n−m) , (79)

where dn,m = max{m − 1, 0}, if n > 0, and dn,m = max{m − 1, 1}, if
n = 0, and C is a suitable constant larger, at least, than γ. Indeed, in
the tree expansion for W

(n;2m)(k)
ω′;ω defined in [23], all the vertices of the tree

have negative scaling dimension and there are three types of endpoints (see

[23]), associated to W (0;2)(h)
ω , W

(1;2)(h)
ω′;ω , W

(0;4)(h)
ω,ω′ , which contribute (up to

dimensional factors and for λ∞ small enough) a factor C1|λ∞|, 1+C2|λ∞| ≤ C
and |λ∞|[1 + C2|λ∞|] ≤ C1|λ∞|, respectively. Notice that the condition
C > γ comes from the bound of the trivial tree (that with only one endpoint)
contributing to the tree expansion of W (0;2)(k)

ω . The bounds (76), (77), (78)
follow from a “power counting improvement”, similar to the one used in [19]
for the Yukawa model, in which the non-locality of the interaction plays an
essential role.
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Proof of Theorem 3.1 The proof is by induction: we assume that the
bounds (76)-(78) hold for h : k + 1 ≤ h ≤ N (for h = N they are true with
C1 = C2 = 0) and we prove them for h = k.

The inductive assumption implies the validity of (79) and we need to
improve such bound when 2 − n − m ≥ 0. We can write, by using the
properties of the fermionic truncated expectations and the fact that, by the
oddness of the free propagator, W (1;0)

ω (k) = 0,

111b W (0;2)(k)
ω (x,y) = (80)

= λ∞

∫
dwdw′ vK(x−w)g[k+1,N ]

ω (x−w′)W
(1;2)(k)
−ω;ω (w;w′,y) ,

which can be bounded, by using (79), as

ω ω
x y = ω ω

x

w′

w

y

Figure 2:p1 : Graphical representation of (80); the gray blobs represent the

kernels W (0;2)(k)
ω and W

(1;2)(k)
−ω;ω , the dotted lines the external fermionic lines,

the paired line is the fermionic propagator g[k+1,N ]
ω and the wiggly line is the

interaction vK .

111c ∥W (0;2)(k)
ω ∥ ≤ |λ∞|∥vK∥L∞∥W (1;2)(k)

−ω;ω ∥
N∑

j=k+1

∥g(j)ω ∥L1 ≤

≤ c1
1− γ−1

γ2KC|λ∞|γ−k ≤ C1|λ∞|γkγ−2(k−K) , (81)

where, for example, C1 = max{2, c1
1−γ−1C}; hence (76) is proved. Notice that

the condition C1 ≥ 2 is introduced only because C1 is the same constant
appearing in (79).

Let us now consider W
(1;2)(k)
ω′;ω (z;x,y) and notice that it can be decom-

posed as the sum of the five terms in Fig.3. The term denoted by (a) in
Fig.3 can be bounded as

∥W (1;2)(k)
(a);ω′;ω∥ ≤ |λ∞|∥vK∥L∞∥W (2;2)(k)

ω′,−ω;ω∥
N∑

j=k+1

∥g(j)ω ∥L1 ≤ CC1|λ∞|γ−2(k−K) . (82)

The bounds for the graphs (c) and (d) are an easy consequence of the bound
for W (0;2)(k)

ω .

18



ω
x

ω
y

ω′
z

− δω′,ω
ω
z = x = y

= ω
x

u
ω

y

w ω′z
(a)

+

ω
x = y

w

ω′
z (b)

+

ω
x u

ω
y

w

ω′
z (c)

+ δω′,ω

x = z
ω

u
ω
y

(d)

Figure 3:p2 : Graphical representation of W
(1;2)(k)
ω′;ω (z;x,y); the external wig-

gly line represent the external field J , while the internal wiggly line is the
interaction vK , as before.

ω

x w

u′

u

ω′

z

(b)

= δω′,−ω
ω

x w

−ω
z

(b1)

+
ω

x w

u′

z′
u

w′

ω′

z

(b2)

+
ω

x w u z′
ω′

z

(b3)

Figure 4:p3 : Graphical representation of the term (b) in Fig.3

In order to obtain an improved bound also for the graph (b) of Fig. 3,

we need to further expand W
(2;0)(k)
ω,ω′ as done in Fig 4, if we define the graph

(b2) so that the vertex u′ can be either on the fermion line joining w with
w′ (as in the figure) or on the other fermion line ending in w.

The bound for the graph (b2) can be done by using the previous argu-
ments. We can write

W
(1;2)(k)
(b2)ω′;ω(z;x,y) = λ2∞δ(x− y)

∫
dwdu′dz′ vK(x−w)vK(u

′ − z′) ·

·
∫
dudw′ g[k+1,N ]

ω (w − u)g[k+1,N ]
ω (u′ −w)g[k+1,N ]

ω (w′ − u′) ·

·W (2;2)(k)
ω′,ω;−ω(z, z

′;w′,u) . (83)

In order to get the right bound, it is convenient to decompose the three
propagators gω into scales and then bound by the L∞ norm the propagator
of lowest scale, while the two others are used to control the integration over
the inner space variables through their L1 norm. Hence we get:

27 ∥W (1;2)(k)
(b2)ω′;ω∥ ≤ |λ∞|2∥vK∥L∞∥vK∥L1∥W (2;2)(k)

ω′,−ω;ω∥ · (84)
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·3!
∑

k+1≤i′≤j≤i≤N
∥g(j)ω ∥L1∥g(i)ω ∥L1∥g(i′)ω ∥L∞ ≤ C3|λ∞|2γ−2(k−K) . (85)

for some constant C3.
The bound of (b1) and (b3) requires a new argument, based on a can-

celation following from the particular form of the free propagator. Let us
consider, for instance, (b1):

W
(1;2)(k)
(b1)ω′;ω(z;x,y) =

= λ∞δω′,−ωδ(x− y)
∫
dw vK(x−w)

[
g
[k+1,N ]
−ω (w − z)

]2
. (86)

Since the cutoff function Ck,N(k) is symmetric in the exchange between k0
and k1, it is easy to see that g[k,N ]

ω (x0, x1) = −iωg[k,N ]
ω (x1,−x0); hence

mas3

∫
du

[
g
[k+1,N ]
−ω (u)

]2
= 0 . (87)

It follows, by using (87) and the identity

idb vK(x−w) = vK(x−z)+
∑
j=0,1

(zj−wj)
∫ 1

0
ds (∂jvK)(x−z+s(z−w)) , (88)

that we can write

W
(1;2)(k)
(b1)ω′;ω(z;x,y) = λ∞δω′,−ωδ(x− y) · (89)

·
∑
j=0,1

∫ 1

0
ds

∫
dw (∂jvK)(x− z+ s(z−w))(zj − wj)

[
g
[k+1,N ]
−ω (w − z)

]2
.

Hence,

∥W (1;2)(k)
(b1)ω′;ω∥ ≤ 4|λ∞|

N∑
i=k

i∑
j=k

∥g(j)−ω∥L∞

∫
dx |(∂jvK)(x)| · (90)

·
∫
dw |wj||g(i)−ω(w)| ≤ C4|λ∞|γ−(k−K) . (91)

By summing all the bounds, we see that there is a constant C2 such that

ab ∥W (1;2)(k)
ω′;ω − δω,ω′δ2∥ ≤ C2|λ∞|γ−(k−K) , (92)

which proves (77). The bound (78) for W (0;4)(k) follows from similar argu-
ments.

Remark In presence of the A fields the above analysis can be repeated,
with the only difference that in the analogue of Fig. (3.3) the (b1) and (b3)
terms are missing.
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3.3 Equivalence of the spin and the QFT models

As a consequence of the integration of the ultraviolet scales discussed in the
previous section, we can write the removed cutoffs limit of (71), with η = 0
and with the choice K = 0, as

221 lim
l→−∞

lim
N→∞

∫
Pµ0,Z0(dψ

(≤0))eV
(0)(ψ(≤0))+B(0)(ψ(≤0),A,J) , (93)

where the propagator of the integration measure in (93) coincides with

g
(≤0)
T (x,y), defined in (54), LV(0) = λ0F

(0)
λ and LB(0), when J = 0, de-

fined as in (2.37); from the analysis of the previous section it follows that λ0
is a smooth function of λ∞, such that λ0 = λ∞ +O(λ2∞).

The multiscale integration for the negative scales can be done exactly as
described in §2.3, with the only difference that, by the oddness of the free
propagator, νj = 0 and

λj−1 = λj + β̂
(j)
λ (λj, ...λ0) , (94)

where, by (53) and the short memory property,

β̂
(j)
λ (λj, ...λ0) = β

(j)
λ (λj, ...λ0) +O(λ̄2jγ

ϑj) , (95)

β
(j)
λ (λj, ...λj) being the function appearing in the bound (59), so that we can

prove in the usual way that λ−∞ = λ0 +O(λ20); since λ0 = λ∞ +O(λ2∞), we
have

λ−∞ = h(λ∞) = λ∞ +O(λ2∞) , (96)

for some analytic function h(λ∞), invertible for λ∞ small enough. Moreover,
by using (53)

ffg2
Z±
j−1

Z±
j

= 1 + β̂
(j)
± (λj, ..., λ0) , (97)

with
dx1 β̂

(j)
± (λj, ..., λ0) = β

(j)
± (λj, ...λ0) +O(λ̄2jγ

ϑj) , (98)

β
(j)
± being the functions appearing in (63). This implies that

dx2 η± = logγ[1 + β±(λ−∞)] , (99)

that is the critical indices in the AT or 8V or in the model (71) are the same
as functions of λ−∞.

Of course λ−∞ is a rather complex function of all the details of the models.
However, if we call λ′j(λ) the effective couplings of the lattice model of the
previous sections, the invertibility of h(λ∞) implies that we can choose λ∞
so that

dx3 h(λ∞) = λ′−∞(λ) . (100)
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With this choice of λ∞(λ), the critical indices are the same, as they depend
only on λ−∞; the rest of this chapter is devoted to the proof that the critical
indices have, as functions of λ∞, simple expressions, which imply the scaling
relations in the main theorem.

4 Ward Identities and Schwinger-Dyson equa-

tion

In this section we prove that the Gauge symmetry of the equivalent QFT
model implies closed equations for the correlations, from which an explicit
expression of the correlations and the indices as a function of λ∞ can be
derived; such expressions are so simple that the validity of the extended
scaling relation can be checked. Such a simplicity follows from the fact that
the Ward Identities for the equivalent QFT model, from which the closed
equations are derived, verify a property called anomaly non-renormalization.

4.1 Schwinger-Dyson equations and Ward Identities

sec3.4

The Schwinger-Dyson equations for the model (71) are generated by the
identity, see [6],

SDE Dω(k)
∂eWN

∂η̂+k,ω
(0, η) = χl,N(k)

[
η̂−k,ωe

WN (0,η) −

−λ∞
∫ dp

(2π)2
v̂K(p)

∂2eWN

∂Ĵp,−ω∂η̂
+
k+p,ω

(0, η)

]
, (101)

where Dω(k) = −ik0+ωk and we have shortened the notation of WN(0, J, η)
into WN(J, η).

On the other hand, by the change of variables ψ±
x,ω → e±iαx,ωψ±

x,ω, we
obtain another identity:

grez Dω(p)
∂WN

∂Ĵp,ω
(0, η)− τ v̂K(p)D−ω(p)

∂WN

∂Ĵp,−ω
(0, η) = (102)

=
∫ dk

(2π)2

[
η̂+k+p,ω

∂WN

∂η̂+k,ω
(0, η)− ∂WN

∂η̂−k+p,ω

(0, η)η̂−k,ω

]
+
∂WA

∂α̂p,ω

(0, 0, η) ,

where τ is a constant to be chosen later,

h11 eWA(α,J,η) =
∫
P (dψ[l,N ])eV

(N)(ψ[l,N ])+
∑

ω

∫
dx Jx,ωψ

[l,N ]+
x,ω ψ

[l,N ]−
x,ω

·e
∑

ω

∫
dx[ψ

[l,N ]+
x,ω η−x,ω+η

+
x,ωψ

[l,N ]−
x,ω ]e[A0−τA−](α,ψ[l,N ]) , (103)

22



A0(α, ψ)
def
=

∑
ω=±

∫ dq dp
(2π)4

Cω(q,p)α̂q−p,ωψ̂
+
q,ωψ̂

−
p,ω , (104)

A−(α, ψ)
def
=

∑
ω=±

∫ dq dp
(2π)4

D−ω(p− q)v̂K(p− q)α̂q−p,ωψ̂
+
q,−ωψ̂

−
p,−ω ,(105)

Cω(q,p) = [χ−1
l,N(p)− 1]Dω(p)− [χ−1

l,N(q)− 1]Dω(q) , (106)

and χl,N(k) =
∑N
k=l fk(k).

An explicit derivation of (102) can be found in §2.2 of [10]; (102) is
obtained by introducing a cut-off function χεl,N(k) never vanishing for all
values of k ̸= 0 and equivalent to χl,N(k) as far as the scaling properties of the
theory are concerned; ε is a small parameter and limε→0+ χ

ε
l,N(k) = χl,N(k).

This further regularization (to be removed before taking the removed cutoffs
limit) ensures that the identity [(χεl,N)

−1(k) − 1]χεl,N(k) = 1 − χεl,N(k) is
satisfied for all k ̸= 0. When this further regularization is removed, all the
quantities we shall study have a well defined expression and, by the change
of variables ψ±

x,ω → e±iαx,ωψ±
x,ω, we get the Ward identity (WI):

grez1 Dω(p)
∂WN

∂Ĵp,ω
(0, η) = (107)

=
∫ dk

(2π)2

[
η̂+k+p,ω

∂WN

∂η̂+k,ω
(0, η)− ∂WN

∂η̂−k+p,ω

(0, η)η̂−k,ω

]
+
∂WA

∂α̂p,ω

(0, 0, η)
∣∣∣
τ=0

.

(102) is obtained by just adding and subtracting the second term in the first
line of (102). The last term in (107) is a correction to the formal WI, due to
presence of the ultraviolet cut-off function χl,N .

The two equations obtained from (102) by putting ω = ±1 can be solved
w.r.t. ∂eWN/∂Ĵp,ω and, if we define

a(p) =
1

1− τ v̂K(p)
, ā(p) =

1

1 + τ v̂K(p)
,

Aeps Aε(p) =
a(p) + εā(p)

2
, (108)

we obtain the identity

WT1
∂eWN

∂Ĵp,ω
(0, η)−

∑
ω′

Aωω′(p)

Dω(p)

∂eWA

∂α̂p,ω′
(0, 0, η) = (109)

=
∑
ω′

Aωω′(p)

Dω(p)

∫ dk

(2π)2

[
η̂+k+p,ω′

∂eWN

∂η̂+k,ω′
(0, η)− ∂eWN

∂η̂−k+p,ω′
(0, η)η̂−k,ω′

]
.

By using (109) and (101), we easily get:

ce Dω(k)
∂eWN

∂η̂+k,ω
(0, η) = χl,N(k)

{
η̂−k,ωe

WN (0,η) −
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−λ∞
∑
ω′

∫ dp

(2π)2
vK(p)

A−ωω′(p)

D−ω(p)
· (110)

·
∫ dq

(2π)2

[
η̂+q+p,ω′

∂2eWN

∂η̂+q,ω′∂η̂+k+p,ω

(0, η)− ∂2eWN

∂η̂+k+p,ω∂η̂
−
q+p,ω′

(0, η)η̂−q,ω′

]
−

−λ∞
∑
ω′

∫ dp

(2π)2
vK(p)

A−ωω′(p)

D−ω(p)

∂2eWA

∂α̂p,ω′∂η̂+k+p,ω

(0, 0, η)

}
,

where we have used that, by simple parity arguments,

λ∞

∫ dp

(2π)2
vK(p)

A−ωω(p)

D−ω(p)

∂eWN

∂η̂+k,ω
(0, η) = 0 . (111)

4.2 Closed equation

sec3.4a

If we make an arbitrary number of functional derivatives with respect to
the η external fields in (110), then we set η = 0 and perform the Fourier
transform, we obtain a set of differential equations. We will prove in the last
section the following crucial result

th4.1

Theorem 4.1 If λ∞ is small enough and we put

61bb τ =
λ∞
4π

, (112)

then the Fourier transforms of the correlation functions generated by setting
η = 0 after deriving w.r.t. η the functional

ff
∑
ω′

∫ dp

(2π)2
vK(p)

A−ωω′(p)

D−ω(p)

∂2eWA(0,0,η)

∂α̂p,ω′∂η̂+k+p,ω

, (113)

vanish at distinct points in the removed cutoff limit (defined at the beginning
of §3.1).

This theorem will be proved in §4.3. We want now to show how to use it
to prove the identity (10), so completing the proof of Theorem 1.1.

By using Theorem 4.1 and some regularity property of the Schwinger
functions (for details, see §A.1 in [6]) we get, in the removed cutoff limit, a
set of closed equation for the Schwinger functions. In particular, if we define

⟨ψ−
x,ωψ

+
y,ω⟩

def
= Sω(x− y) , (114)

Gom ⟨ψ−
x,ωψ

−
y,−ωψ

+
u,−ωψ

+
v,ω⟩

def
= Gω(x,y,u,v) , (115)

24



we get
eqx (∂ωSω) (x)− λ∞FK,−(x)Sω(x) = δ(x) , (116)

where ∂ω = ∂x0 + iω∂x1 and FK,−(x) =
∫
dp/(2π)2e−ipxF̂K,−(−p), with

F̂K,ε(p)
def
=
vK(p)Aε(p)

D−ω(p)
. (117)

The solution of (116) is:

Som Sω(x) = eλ∞∆−(x,0)gω(x) , (118)

having defined

∆ε(x, z) =
∫ dk

(2π)2
e−ikx − e−ikz

Dω(k)
F̂K,ε(−k) . (119)

Notice that, for large |x|, thanks to (108),

delta ∆ε(x, 0) ∼ −Aε(0)
2π

ln |x| = −a(0) + εā(0)

4π
ln |x| , (120)

which implies, in particular, that the critical index ηz, defined in (64) is given
by

ηz =
λ∞
4π

[a(0)− ā(0)] =
2τ 2

1− τ 2
. (121)

Moreover, if we take in (110) three derivatives w.r.t. η̂+q,−ω, η̂
−
k+q−s,ω and

η̂−s,−ω, we find, after Fourier transforming and in the cutoffs limit,

(∂xωGω) (x,y,u,v) = δ(x− v)S−ω(y − u)+

+λ∞
[
FK,+(x− y)− FK,+(x− u)− FK,−(x− v)

]
Gω(x,y,u,v) ,(122)

which is solved, by using (118), by

eqG Gω(x,y,u,v) = e
−λ∞

[
∆+(x−y,v−y)−∆+(x−u,v−u)

]
·

· Sω(x− v)S−ω(y − u) . (123)

The r.h.s. of (123) is well defined for x = u and y = v, if x ̸= y, or x = y
and u = v, if x ̸= u. This is a consequence of the fact that the operators
ψ+
x,ωψ

−
x,−ω and ψ+

x,ωψ
+
x,−ω are well defined even in the limit N → ∞, thanks

to the non locality of the interaction. Hence, one expects that ∂2WN

∂A+
x ∂A

+
y
and

∂2WN

∂A+
x ∂A

+
y
can be calculated by simply using equations (123), (118). A rigorous

proof of this statement could be done by a simple extension of Lemma 4.1
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of [6] (with Z̄
(1)
N = c1 = 1+O(λ∞)), where a similar (more difficult) problem

is considered.
If we put (123) x = u and y = v, we find, using also (115) and (120),

that

ppp1 ⟨ψ+
x,ωψ

−
x,−ωψ

+
y,−ωψ

−
y,ω⟩ = ⟨ψ+

x,ωψ
−
x,−ωψ

+
y,−ωψ

−
y,ω⟩0e

−2λ∞[∆+(x−y,0)−∆−(x−y,0)]

∼
|x−y|→∞

C

|x− y|2[1−ā(0)(λ∞/2π)]
. (124)

If we put instead x = y and u = v, we get

ppp2 ⟨ψ+
x,ωψ

+
x,−ωψ

−
u,−ωψ

−
u,ω⟩ = ⟨ψ+

x,ωψ
+
x,−ωψ

−
u,−ωψ

−
u,ω⟩0e

2λ∞[∆+(x−u,0)+∆−(x−u,0)]

∼
|x−u|→∞

C

|x− u|2[1+a(0)(λ∞/2π)]
. (125)

Let us now choose λ∞, so that (100) is satisfied. Then, by using (49), (108),
(112) and the definition (8) of x± we get the identities

x+ =
1− τ

1 + τ
, x− =

1 + τ

1− τ
, (126)

which imply the identity (10).

Remark The proof of the relation x−x+ = 1 follows from two main ingre-
dients, namely the linearity of τ as a function of λ∞, see (112), and the
vanishing of the last term in (110). The validity of such properties is due
to our choice of the equivalent continuum model; it is indeed known, as
proved in [5], that in other QFT models, still equivalent to the spin model,
such properties are not true so that they do not allow to derive the relation
x−x+ = 1. The linearity of τ as a function of λ∞ corresponds to a prop-
erty called in the physical literature non renormalization of the anomaly or
Adler-Bardeen theorem, see [23, 24, 25].

4.3 Proof of Theorem 4.1

sec3.4b

We start with the multiscale integration of the Grassman integralWA(α, 0, η)
(103) appearing on the WI (4.2). Notice thatWA(α, 0, η) (103) is very similar
to WN(J, η), see (71), the difference being that

∫
Jx,ωψ

+
x,ωψ

−
x,ω is replaced by

A0 − τA−. A crucial role in the analysis is played by the function Cω(p,q)
appearing in the definition ofA0; this function is very singular, but it appears
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in the various equations relating the correlation functions only through the
regular function

mjmj Û (i,j)
ω (q+ p,q)

def
= χ̃N(p)Cω(q+ p,q)ĝ(i)ω (q+ p)ĝ(j)ω (q) , (127)

where χ̃N(p) is a smooth function, with support in the set {|p| ≤ 3γN+1}
and equal to 1 in the set {|p| ≤ 2γN+1}; we can add freely this factor in the
definition, since Û (i,j)

ω (q + p,q) will only be used for values of p such that
χ̃N(p) = 1, thanks to the support properties of the propagator. It is easy
to see that Û (i,j)

ω vanishes if neither j nor i equals N or l; this has the effect
that at least one of the fields in A0 has to be integrated at the N or l scale.

As a matter of fact, the terms in which at least one field is integrated at
scale l are much easier to analyze, see the considerations after (161) below.

In order to study the others, it is convenient to introduce the function Ŝ
(i,j)
ω̄,ω

such that

91 Û (i,j)
ω (q+ p,q) =

∑
ω̄

Dω̄(p)Ŝ
(i,j)
ω̄,ω (q+ p,q) . (128)

One can show that, if we define

S
(i,j)
ω̄,ω (z;x,y) =

∫ dp dq
(2π)4

e−ip(x−z)eiq(y−z)Ŝ
(i,j)
ω̄,ω (p,q) , (129)

then, given any positive integer M , there exists a constant CM such that, if
j > l,

61 |S(N,j)
ω̄,ω (z;x,y)| ≤ CM

γN

1 + [γN |x− z|]M
γj

1 + [γj|y − z|]M
, (130)

a bound which is used to control the renormalization of the marginal terms
containing a vertex of type A0. We choose τ as given by

61b τ = λ∞
N∑

i,j=l+1

∫ dq

(2π)2
Ŝ
(i,j)
−ω,ω(q,q) ; (131)

by an explicit calculation one can see that, for any l < 0 and N > 0, τ
satisfies (112). We remark that, to get this result, it is important to exclude
from the sum in the r.h.s. of (131) the couples (i, j) with one of the indices
equal to l; without this restriction, τ would be equal to 0, for any N > 0.

We will proceed as in the analysis of WN(J, η), by integrating first the
ultraviolet scales N,N −1, . . . , h+1, h ≥ K, and following a procedure very
similar to the one described in §3.2; we have new marginal terms with one
α field and two ψ fields and we have to prove the analogue of (77) for them.
The marginal terms such that only one of these two fields is contracted are
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proportional to W (0;2)(k), so that one can use (76) to bound them. Hence,
we shall consider in detail only the terms such that both fields of A0 or A1

are contracted and we shall call K̂
(n;2m)(k)
∆;ω;ω′ the corresponding kernels of the

monomials with 2m ψ-fields and n α-fields. In the case n = 1, we decompose
them as follows:

K̂
(1;2m)(k)
∆;ω;ω′ (p;k) =

∑
σ

Dσω(p)Ŵ
(1;2m)(k)
∆;σ,ω;ω′ (p;k) , (132)

where p is the momentum flowing along the external α-field. As in §3.2,
we have to improve the dimensional bound of W

(1;2)(k)
∆;σ,ω;ω′ . We can write the

following identity, which is represented by the first line of Fig.5 in the case
σ = −1:

71ter W
(1;2)(k)
∆;σ,ω;ω′(z;x,y) =

N∑
i,j=k

∫
dudw S(i,j)

σω,ω(z;u,w)W
(0;4)(k)
ω,ω′ (u,w,x,y)−

−τ δ−1,σ

∫
dw vK(z−w)W

(1;2)(k)
−ω;ω′ (w;x,y) . (133)

ω

z
u

w

ω′
x

ω′y

− νN
−ω
z w ω′

x

ω′y

=
ω

z u w ω′

x

ω′y(a)

− νN
−ω

z = uw ω′
x

ω′y(b)

+
ω

z

u u′

w
w′

ω′y

ω′
x

(c)

+ δω,ω′
ω

z
w

ω′

x

w′

ω′u = y(d)

− δω,ω′
ω

z
w

ω′

x

w′

u u′
ω′y(e)

Figure 5:p8b : Graphical representation of W
(1;2)(k)
∆;−1,ω;ω′ ; the triangular vertex

represent Cω(q,p) given by (4.5)

We can further decompose W
(1;2)(k)
∆;−1,ω;ω′ as in the last three lines of Fig.5.

The term (c) can be written as

λ∞
N∑

i,j=k

∫
dudu′dwdw′ S

(i,j)
−ω,ω(z;u,w)g[k,N ]

ω (u− u′)vK(u−w′) ·
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·W (1;4)(k)
−ω;ω,ω′(w′;u′,w,x,y) . (134)

Hence, if we put bj(x)
def
= γj/(1 + [γj|x|]3), we recall that S

(i,j)
−ω,ω is different

from 0 only if either i or j is equal to N , and we use the bound (130), we
see that the norm of (c) is bounded by

C3|λ∞|∥vK∥L∞

N ∗∑
i,j,m=k

∫
dxdu′dwdw′ |W (1;4)(k)

−ω;ω,ω′(w′;u′,w,x,y)| ·

·
∫
dzdu bi(z−w)bj(z− u)|g(m)

ω (u− u′)| , (135)

where ∗ reminds that max{i, j} = N . Since the L1 and the L∞ norm of bj
satisfy a bound similar to analogous bounds of g(j)ω , we can proceed as in the
previous section to bound

∫
dzdu bi(z−w)bj(z− u)|g(m)

ω (u− u′)|, by taking
the L∞ norm for the factor with the smaller index and the L1 norm for the
other two. By also using (79), we get the bound

Cϑ|λ∞|2γ−2(k−K)γ−ϑ(N−k) , (136)

for any 0 < ϑ < 1 (Cϑ is divergent for ϑ → 1). With respect to analogous
bound in §3.2 ((b2) in Fig.4), there is an improvement of a factor γ−ϑ(N−k).
The term (d) can be bounded by

C|λ∞|∥vK∥L∞

N ∗∑
i,j=k

∥bi∥L1 ∥bj∥L1 ≤ C|λ∞|γ−(k−K)γ−(N−k) ;

for the term (e) we get the bound C|λ∞|2γ−3(k−K)γ−(N−k). By putting to-
gether all the previous bounds, we get

222 ∥(c) + (d) + (e)∥ ≤ Cϑ|λ∞|γ−(k−K)γ−ϑ(N−k) . (137)

We consider now the terms (a) and (b), whose sum can be written as

75

∫
du

λ∞ N∑
i,j=k

S
(i,j)
−ω,ω(z;u,u)− τδ(z− u)

 ·
·
∫
dw vK(u−w)W

(1;2)(k)
−ω;ω′ (w;x,y) . (138)

By using the identity (88), (138) can be written also as

125b

λ∞ N∑
i,j=k

∫
du S

(i,j)
−ω,ω(z;u,u)− τ

 ∫ dw vK(z−w)W
(1;2),(k)
−ω;ω′ (w;x,y) +

+λ∞
∑
p=0,1

N∑
i,j=k

∫
du S

(i,j)
−ω,ω(z;u,u)(up − zp) · (139)

·
∫ 1

0
ds

∫
dw (∂pvK)(z−w + s(u− z))W

(1;2),(k)
−ω;ω′ (w;x,y) .
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The latter term is again irrelevant and vanishing for N − k → +∞; in fact,
its norm can be bounded by

2|λ∞|∥W (1;2),(k)
−ω;ω′ ∥ ∥∂vK∥L1

N ∗∑
i,j=k

∫
dz bi(z− u)bj(z− u)|u− zp| ≤

≤ C|λ∞|γ−(k−K)γ−(N−k) . (140)

Contrary to what happened for the graph (b1) of Fig4, the contribution of
the graph (a) to the first term in the r.h. side of (139) is not zero (that
is, the fermionic bubble is not vanishing); however, in this case its value is
compensated by the graph (b), thanks to the explicit choice we made for τ .
Indeed we have

78bis λ∞
N∑

i,j=k

∫
du S

(i,j)
−ω,ω(z;u,u)− τ = −2λ∞

k−1∑
j=l+1

∫
du S

(N,j)
−ω,ω (z;u,u) , (141)

that easily implies that the norm of the first term in the r.h. side of (139) is
bounded by C|λ∞|γ−(N−k).

Let us finally considerW
(1;2)(k)
∆;+1,ω;ω′ , for which we can use a graph expansion

similar to that of Fig.5, the only differences being that τ is replaced by 0
and the indices −ω are replaced by ω. Hence a bound can be obtained with
the same arguments used above, with only one important difference: the
contribution that in the previous analysis was compensated by the graph (b)
now is zero by symmetry reasons. Indeed, if we call k∗ the vector k rotated
by π/2, it is easy to see that Ŝ

(i,j)
ω̄,ω (k∗,p∗) = −ωω̄Ŝ(i,j)

ω̄,ω (k,p), which implies
that

79

N∑
i,j=k

∫
du S(i,j)

ω,ω (z;u,u) =
N∑

i,j=k

∫
dk

(2π)2
Ŝ(i,j)
ω,ω (k,−k) = 0 . (142)

We have then proved that

de ∥W (1;2)(k)
∆;σ,ω;ω′∥ ≤ C|λ∞|γ−ϑ(N−k) , (143)

which implies, as in the proof of Theorem 3.1, that, for K ≤ k ≤ N ,

de1 ∥W (1;2m)(k)
∆;σ,ω;ω′ ∥ ≤ (C|λ∞|)mγ(1−m)kγ−ϑ(N−k) . (144)

With respect to the bounds appearing in Theorem 3.1, there is an extra
factor γ−ϑ(N−k), implying that such kernels vanish at fixed k in the N → ∞
limit. However, this is not sufficient to prove Theorem 4.1, as in (113) the
derivatives of WA(α, 0, η) with respect to the external fields are integrated
over p.
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It is convenient to write (113) as

∑
ω′

∫ dp

(2π)2
vK(p)

A−ωω′(p)

D−ω(p)

∂2eWA(0,0,η)

∂α̂p,ω′∂η̂+k+p,ω

=
∑
ε=±

∂WT,ε

∂β̂k,ω
(0, η) (145)

where

eWT,ε(β,η) =
∫
P (dψ[l,N ])eV

(N)(ψ[l,N ])+
∑

ω

∫
dx[ψ

[l,N ]+
x,ω η−x,ω+η

+
x,ωψ

[l,N ]−
x,ω ] ·

· e

[
T

(ε)
1 −τT (ε)

−

]
(ψl,N ,β)

(146)

and

80 T
(ε)
1 (ψ, β) =

∑
ω

∫ dk dp dq
(2π)4

v̂
(ε)
K (p)

C−εω(q+ p,q)

D−ω(p)
·

· β̂k,ωψ̂
−
k+p,ωψ̂

+
q+p,−εωψ̂

−
q,−εω , (147)

80a T
(ε)
− (ψ, β) =

∑
ω

∫ dk dp dq
(2π)4

û
(ε)
K (p)β̂k,ωψ̂

−
k+p,ωψ̂

+
q+p,εωψ̂

−
q,εω , (148)

where

v̂
(ε)
K (p)

def
= vK(p)Âε(p) , û

(ε)
K (p) = v̂

(ε)
K (p)v̂K(p)

Dεω(p)

D−ω(p)
. (149)

Notice that v
(±)
K (x) and u

(−)
K (x) are smooth functions of fast decay, hence

they are equivalent to vK(x) in the bounds. This is not true for u
(+)
K (x),

whose Fourier transform is bounded but discontinuous in p = 0. However,
in the following we shall only need to know that ∥u(+)

K ∥L∞ ≤ Cγ2K and that

|û(+)
K (p)| ≤ |v̂(+)

K (p)v̂K(p)|, which are easy to prove.
As in §4.1, we now perform a multiscale integration for the ultraviolet

scales N,N − 1, . . . , k + 1, k ≥ K, very similar to the one described in §3.2,
the main difference being that that there appear in the effective potential
new monomials in the external field β and in ψ. Again, as in Theorem 3.1,
one has to produce an improved bound only on the terms with positive or
vanishing dimension, so that one has to analyze the kernels of the monomials
with a β field and one or three ψ fields.

We consider first the terms contributing to WT,ε(β, η), in which at least

one of the two ψ-fields in T
(ε)
1 (ψ, β) with momentum q + p or q is con-

tracted at scale N . We shall call W
(1;2m−1)
T,ε;ω;ω′ the corresponding kernels of the

monomials with 2m− 1 ψ-fields and 1 α-field.
We can write

W
(1;1)(k)
T,ε;ω,ω =W

(1;1)(k)
(a)T,ε;ω,ω +W

(1;1)(k)
(b)T,ε;ω,ω (150)
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where
a) W

(1;1)(k)
(a)T,ε;ω,ω is the sum over the terms such that the field β belongs only

to a T
(ε)
1 -vertex, whose ψ-field ψ̂+

q+p,−εω either is contracted with ψ̂−
k+p,ω

(this can happen only for ε = −1) or is connected to it through a kernel
Ŵ (0;2)(k)
ω (q+ p).

b) W
(1;1)(k)
(b)T,ε;ω,ω is the sum over the remaining terms.

Let us consider the first term. Given k, for N large enough, χ−1
l,N(k)−1 =

0; hence we can write:

95 Ŵ
(1;1)(k)
(a)T,ε;ω,ω(k) = δε,−1

∫ dp

(2π)2
v̂
(−1)
K (p)

D−ω(p)
[χ−∞,N(p+ k)− 1] · (151)

·
[
1 + ĝ[k+1,N ]

ω (p+ k)Ŵ (0;2)(k)
ω (p+ k)

] [
1 + ĝ[k+1,N ]

ω (k)Ŵ (0;2)(k)
ω (k)

]
.

Moreover, since v̂
(−1)
K (p) = 0 for |p| ≥ 2γK , then χ−∞,N(p + k) − 1 = 0, if

v̂
(−1)
K (p) ̸= 0 and N is large enough. It follows that, given a fixed k, for N
large enough,

Ŵ
(1;1)(k)
(a)T,ε;ω,ω(k) = 0 . (152)

Let us now consider W
(1;1)(k)
(b)T,ε;ω,ω(x − y), which can be decomposed as in

Fig. 6.

ω
x

ω
y

z

w

− ν ω
x

z

ω
yy

w

Figure 6:p9b : Graphical representation of W
(1;1)(k)
(b)T,ε;ω,ω; the dotted line coming

from x represent the external field β.

By using (133), it can be written as∑
σ

∫
dz u

(ε)
K (x− z)g[k,N ]

ω (x−w)W
(1;2)(k)
∆;σ,−εω;ω(z;y,w) , (153)

hence its norm, by using (143), can be bounded by

∥u(ε)K ∥L∞

N∑
j=k

|g(j)ω |L1∥W (1;2)(k)
∆;σ,−εω;ω∥ ≤ C|λ∞|γkγ−2(k−K)γ−ϑ(N−k) . (154)

so that
t1 ∥W (1;1)(k)

T,ε;ω,ω ∥ ≤ C|λ∞|γkγ−ϑ(N−k)γ−2(k−K) . (155)

Moreover
fffg W

(1;3)(k)
T,ε;ω;ω′ = W

(1;3)(k)
(a)T,ε;ω;ω′ +W

(1;3)(k)
(b)T,ε;ω;ω′ , (156)
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where W
(1;3)(k)
(a)T,ε;ω;ω′ contains the terms in which the field ψ̂k+p,ω of T1 and T−

is not contracted or is linked to a kernel Ŵ (0;2)(k)
ω , while the other terms are

collected in W
(1;3)(k)
(b)T,ε;ω;ω′ .

Let us consider first W
(1;3)(k)
(b)T,ε;ω;ω′ , which can be represented as in Fig.7.

(b1)

ω
x

z

w
ω′

v

ω′

u

ω

y
(b2)

− νNω x

z

w
ω′

v

ω′

u

ω

y

+

(b3)
ω x

z εω

w
ω′

v

ω′
u +

(b4)
ω
x

z εω

w
ω′

v

ω′
u

Figure 7:p12 : Graphical representation of W
(1;3)(k)
(b)T,ε;ω;ω′

We can write

W
(1;3)(k)
(b)T,ε;ω,ω′(x,y,u,v) = (157)

=
∫
dzdw u

(ε)
K (x− z)g[k,N ]

ω (x−w)W
(1;4)(k)
∆,ε;ω,ω′(z;w,y,u,v) ,

so that, by the bounds (143), ∥W (1;4)(k)
∆,ε;ω,ω′∥ ≤ C|λ∞|γ−kγ−ϑ(N−k) and ∥u(ε)K ∥L∞ ≤

Cγ2K , we get:

∥W (1;3)(k)
(b)T,ε;ω;ω′∥ ≤ C|λ∞|γ−2(k−K)γ−ϑ(N−k) . (158)

Let us now consider W
(1;3)(k)
(a)T,ε;ω;ω′ ; its Fourier transform, if we call k+ and k−

the momenta of the two fields connected to the line u
(ε)
K , can be written as

(notice that ω′ is of the form (ω, ω′, ω′)):

Ŵ
(1;3)(k)
(a)T,ε;ω;ω′(k;k

+,k−) =
[
1 + ĝ[k+1,N ]

ω (k+ k+ − k−)Ŵ (0;2)(k)
ω (k+ k+ − k−)

]
·

·û(ε)K (k+ − k−)
∑
σ

Ŵ
(1;2)(k)
∆;σ,−εω,ω′(k− + k+ − k−,k−) . (159)

Then, if ε = −1, since ∥v(−1)
K ∥L1 ≤ C, by using the bounds (143) and (76),

we find
w13 ∥W (1;3)(k)

(a)T,−1;ω;ω′∥ ≤ C|λ∞|γ−ϑ(N−k) (160)

Using the general bound (2.58) of [5], we get that the contributions to the
derivatives of WT,ε with respect to η at distinct space points, coming from

trees containing one endpoint associated with one of the kernels W
(1;1)(k)
T,−1;ω;ω′ ,
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W
(1;3)(k)
(a)T,−1;ω;ω′ ,W

(1;3)(k)
(a)T,−1;ω;ω′ , are bounded by Ckk!4λk∞δ

−2k(γ
−N

δ
)ϑ, with 0 < ϑ <

1 and δ the minimal distance between the external points; hence they are
vanishing in the removed cutoff limit.

A similar conclusion is true for the contributions to the derivatives of
WT,ε with respect to η at distinct points, coming from trees containing one

endpoint associated with W
(1;3)(k)
(a)T,+;ω;ω′ , even if u

(+)
K (x) is not integrable. In

fact, since |Λ̃| ≤ γ−2l, it is easy to show that
∫
Λ̃
dx|v(+1)

K (x)| ≤ Cγ−l, so that
the previous bound has to be multiplied by γ−l; however, we take the limit
−l → ∞ after the limit N → ∞, hence the conclusion is the same.

Finally we have to consider the contributions to the correlation functions
such that one of the ψ-fields in T

(ε)
1 (ψ, β) with momentum q + p or q, see

(147), is contracted at scale l. In such a case we can use the bound

61a

∣∣∣∣∣∣Û
(i,l)
ω′ (q+ p,q)

Dω(p)

∣∣∣∣∣∣ ≤ Cγ−(i−l)γ
−l−i

Zi−1

, if |p| ≥ 2γl+1 , (161)

and the factor γ−(i−l) in the r.h.s. of this bound makes negative the scaling
dimension of marginal terms with an external β line (there are no relevant
terms), see §4.8 of [11] for details. Again by the bound (2.58) of [5] we get,
for this kind of contributions to the the derivatives of WT,ε with respect to η
at distinct points, the bound Ckk!4λk∞δ

−2k(γl/δ)ϑ, with 0 < ϑ < 1, so they
are vanishing as l → −∞. This completes the proof of Theorem 4.1.

A Fermionic representation of the partition

function

A

A.1 Proof of (19)

sec5.1

Since σx, σ
′
x = ±1,

exp (ασxσx+ejσ
′
yσ

′
y+ej′

) = cosh(α) + σxσx+ejσ
′
yσ

′
y+ej′

sinh(α) ,

so that the partition function for the AT or 8V model with external fields is
given by:

int Z(I, I ′) = [cosh(βJ4)]
2|Λ| ·

·
∏
j=0,1
x∈Λ

1 + tanh(βJ4)
∂2

∂Ãj,xÃ′
j,x

Z(I)Z(I ′) , (162)
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where I ′j,x = A′
j,x + βJ ′ and, in the AT case, Ãj,x = Aj,x and Ã′

j,x = A′
j,x,

while, in the 8V case, Ã0,x = A0,x, Ã
′
0,x = A′

1,x, Ã1,x = A1,x+e0 , Ã
′
1,x =

A′
0,x+e1

.

Let us call t̃j,x, c̃j,x the expressions obtained from tj,x, cj,x by substituting
Aj,x with Ãj,x; in a similar way we define t̃′j,x, c̃

′
j,x. Let us now define:

fj,x = 1 + tanh(βJ4)t̃j,xt̃
′
j,x ,

gj,x =
t̃′j,x

(c̃j,x)2
tanh(βJ4)

fj,x
, g′j,x =

t̃j,x
(c̃′j,x)

2

tanh(βJ4)

fj,x
,

hj,x =
1

(c̃′j,x)
2(c̃j,x)2

tanh(βJ4)

fj,x
− gj,xg

′
j,x . (163)

By explicitly taking the derivatives w.r.t. Ãj,x and Ã′
j,x we can write the

partition function (162) as

2.10 Z(I, I ′) = 4|Λ| [cosh(βJ4)]
2|Λ|

∏
j,x

fj,xcj,xc
′
j,x

 ·

·
∑
γ,γ′

(−1)δγ+δγ′

4
Zγ,γ′(I, I

′) , (164)

where Zγ,γ′(I, I
′) is the Grassmannian functional integral

2.111a Zγ,γ′(I, I
′) =

∫
dHdV dH ′dV ′ eS̃(̃t+g)+S̃

′ (̃t′+g′)+V (h) , (165)

with boundary conditions γ = (ε0, ε1) and γ
′ = (ε′0, ε

′
1) on the variables H,

V and H ′, V ′, respectively. Moreover S̃(t) and S̃ ′(t) have a definition which
depends on the model. S̃(t) is equal to S(t) in the AT model, while, in the
8V model, it is the function which is obtained from S(t), by substituting,
in the first line of (17), V̄xVx+e1 with V̄x+e0Vx+e0+e1 . S̃

′(t), in the AT case,
is obtained from S(t), by simply replacing H,V with H ′, V ′, while, in the
8V case, we also have to substitute H̄ ′

xH
′
x+e0

with V̄ ′
xV

′
x+e1

and V̄ ′
xV

′
x+e1

with
H̄ ′

x+e1
H ′

x+e1+e0
. V (h) is a quartic interaction that, in the AT case, is given

by

VAT (h) =
∑
x∈Λ

[
h0,xH̄xHx+e0H̄

′
xH

′
x+e0

+ h1,xV̄xVx+e1V̄
′
xV

′
x+e1

]
, (166)

while, in the 8V case, is given by

V8V (h) =
∑
x∈Λ

[
h0,xH̄xHx+e0V̄

′
xV

′
x+e1

+ h1,xV̄x+e0Vx+e0+e1H̄
′
x+e1

H ′
x+e1+e0

]
.

(167)
We remark that gj,x, g

′
j,x, hj,x = O(βJ4).
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The truncated correlations of the quadratic observables are obtained
by taking two derivatives of lnZ(I, I ′) w.r.t. the external sources in two
different points, and putting such external sources to zero. The addends
2|Λ| ln[2 cosh(βJ4)] and

∑
j,x(ln fj,x+ ln cj,x+ ln c′j,x) do not contribute when

we take two derivatives in the A variables of two different points. If we define
∂εj,x = ∂/∂Aj,x + ε∂/∂A′

j,x, we get:

corrA ⟨Oε
x;O

ε
y⟩
T
Λ =

∑
i,j

∂εi,x∂
ε
j,y ln

∑
γ,γ′

(−1)δγ+δγ′Zγ,γ′(I, I
′)

∣∣∣∣∣∣
A≡0

, (168)

so that we get, by some simple algebraic calculations:

corrA1 ⟨Oε
x;O

ε
y⟩
T
Λ =

1

Ẑ

∑
γ,γ′

(−1)δγ+δγ′
∂2Z̄γ,γ′(A)

∂Āεx∂Ā
ε
y

∣∣∣∣∣
Ā=0

−

− 1

(Ẑ)2

∑
γ,γ′

(−1)δγ+δγ′
∂Z̄γ,γ′(A)

∂Āεx

∣∣∣∣∣
Ā=0

∑
γ,γ′

(−1)δγ+δγ′
∂Z̄γ,γ′(A)

∂Āεy

∣∣∣∣∣
Ā=0

,(169)

with Zγ,γ′ defined as in (20), with (γ, γ′)-boundary conditions (instead of an-
tiperiodic in all variables) and Ẑ =

∑
γ,γ′(−1)δγ+δγ′ Z̄γ,γ′(0, 0); the parameters

s, s′ and λ are given by

stg s = tj,x + gj,x|A≡0 = tanh(βJ) + O(βJ4)

s′ = t′j,x + g′j,x
∣∣∣
A≡0

= tanh(βJ ′) + O(βJ4)

2λ = hj,x|A≡0 = O(βJ4) , (170)

and the parameters appearing in (23) and (24) are given by

qε =
∑
i

(
∂

∂Aj,x
+ ε

∂

∂A′
j,x

)
(t̃i,x + gi,x)

∣∣∣∣∣
A≡0

, q′ε = {t̃, g → t̃′, g′} ,

pε =
∑
i

(
∂hi,x
∂Aj,x

+ ε
∂hj,x
∂A′

j,x

)∣∣∣∣∣
A≡0

. (171)

In order to prove (19) we note that, as proved in App. G of [22], if we
put Z̄γ = Zγ|A=0, the quantities Z̄γ,γ′(0)/Z̄γZ̄γ′ are exponentially insensitive
to boundary conditions in the thermodynamic limit, away from the critical
temperature; this implies that Ẑ coincides, in the thermodynamic limit,
with (Z̄γ̄,γ̄(0)/Z̄γ̄Z̄γ̄)(Z̄)

2 with γ̄ = (−,−) and Z̄ =
∑
γ(−1)δγ Z̄γ. Notice

that Z̄ is non vanishing; indeed, as proved in §4 of [26], away from the
critical temperature |Z̄γ| is exponentially insensitive to boundary conditions
and below the critical temperature Zγ is positive for any γ while above is
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negative if γ = (+,+) and positive in all other cases. Moreover, as proved
in App. G of [22],

1

Z̄γ,γ′(0)

∂Z̄γ,γ′(A)

∂Āεx

∣∣∣∣∣
Ā=0

and
1

Z̄γ,γ′(0)

∂2Z̄γ,γ′(A)

∂2Āεx∂Ā
ε
y

∣∣∣∣∣
Ā=0

(172)

are exponentially insensitive to boundary conditions, so that the r.h.s. of

(169) coincides, in the thermodynamic limit, with ∂2 log Z̄γ̄,γ̄(Ā)
∂2Āε

x∂Ā
ε
y

|Ā=0.

A.2 Proof of (25)

sec5.2

In order to make more evident the analogy of the above functional integral
with the action of a fermionic (Euclidean) Quantum Field Model, it is con-
venient to make a change of variables in the Grassmann algebra. The new
Grassmannian variables will be denoted by ψx, ψ̄x, χx and χ̄x and are related
to the old ones by the equations:

2.12 H̄x + iHx = ei
π
4 (ψx − χx) , V̄x + iVx = ψx + χx ,

H̄x − iHx = e−i
π
4

(
ψ̄x − χ̄x

)
, V̄x − iVx = ψ̄x + χ̄x . (173)

A similar transformation is done for the primed variables. After a straight-
forward computation, we see that the action (17), calculated at tj,x = s,
∀j,x, can be written in terms of the Majorana fields as

5.9aa S(s) = A(ψ,ms) + A(χ,Ms) +Q(ψ, χ) , (174)

where ms = 1−
√
2+s, Ms = 1+

√
2+s and, if we define ∂iψx = ψx+ei −ψx,

A(ψ,m) =
s

4

∑
x∈Λ

[
ψx

(
∂0 − i∂1

)
ψx + c.c.

]
− im

∑
x∈Λ

ψ̄xψx +

+
s

4

∑
x∈Λ

[
ψ̄x

(
−i∂0 − i∂1

)
ψx + c.c.

]
, (175)

Q(ψ, χ) = − s

4

∑
x∈Λ

[
ψx

(
∂0 + i∂1

)
χx +

{
ψ ↔ χ

}
+ c.c.

]
−

− s

4

∑
x∈Λ

[
χ̄x

(
−i∂0 + i∂1

)
ψx +

{
ψ ↔ χ

}
+ c.c.

]
, (176)

where, in agreement with (173), we are calling complex conjugation (c.c.) the
operation on the Grassmann algebra which amounts to exchange ψx with ψ̄x,
χx with χ̄x and i with −i.
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The quartic interaction of the AT model becomes:

VAT = −λ
∑
x∈Λ

[
ψ̄xψxψ̄

′
xψ

′
x + ψ̄xψxχ̄

′
xχ

′
x + {ψ ↔ χ}

]
− (177)

−λ
∑
x∈Λ

[
χ̄xψxχ̄

′
xψ

′
x + χ̄xψxψ̄

′
xχ

′
x + {ψ ↔ χ}

]
+RV ,

where RV is sum of quartic terms with at least one (discrete) derivative. In
the case of the 8V model, the second square bracket has +λ in front, rather
than −λ.

If we set bε = (qε+ εq′ε)/2 and dε = (qε− εq′ε)/2, the interaction with the
external field is given by

B(Ā) = −i
∑
x∈Λ
ε=±

bεĀ
ε
x

[
ψ̄xψx + εψ̄′

xψ
′
x + χ̄xχx + εχ̄′

xχ
′
x

]
−

−i
∑
x∈Λ
ε=±

dεĀ
ε
x

[
ψ̄xψx − εψ̄′

xψ
′
x + χ̄xχx − εχ̄′

xχ
′
x

]
+RB,

where RB is sum of monomials quartic in the fields or quadratic with deriva-
tives. We remark that, if J = J ′, then dε = 0, while bε = 1 − tanh(βJ) +
O(βJ4).

We now make another change of variables, defined by the relations

2.12a ψεx,+ =
ψx − εiψ′

x√
2

, ψεx,− =
ψ̄x − εiψ̄′

x√
2

, ε = ± , (178)

and the similar ones for the χ-variables. This change of variables is the
analogous in the euclidean theories of the transformation from Majorana
fermions to Dirac fermions in real time QFT.

If we put u = (s + s′)/2, v = (s − s′)/2 (s, s′ defined in (170)) and
mε = (ms + εms′)/2 (ms and ms′ defined after (174)), we get

36 A(ψ,ms) + A(ψ′,ms′) = (179)

=
∑
x∈Λ

{
u

4

[
ψ+
x,+

(
∂0 − i∂1

)
ψ−
x,+ + ψ−

x,+

(
∂0 − i∂1

)
ψ+
x,+ + c.c.

]
+

+
u

4

[
ψ−
x,+

(
i∂0 + i∂1

)
ψ+
x,− + ψ+

x,+

(
i∂0 + i∂1

)
ψ−
x,− + c.c.

]
+

+
v

4

[
ψ+
x,+

(
∂0 − i∂1

)
ψ+
x,+ + ψ−

x,+

(
∂0 − i∂1

)
ψ−
x,+ + c.c.

]
+

+
v

4

[
ψ−
x,+

(
i∂0 + i∂1

)
ψ−
x,− + ψ+

x,+

(
i∂0 + i∂1

)
ψ+
x,− + c.c.

]
−

−im+

[
ψ+
x,−ψ

−
x,+ − ψ+

x,+ψ
−
x,−

]
+ im−

[
ψ−
x,+ψ

−
x,− + ψ+

x,+ψ
+
x,−

]}
,

where now the c.c. operation amounts to exchange ψεx,ω with ψ−ε
x,−ω and i

with −i. In the new variables the interaction with the external source is
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given by

BAapp B(Ā) = i
∑
x∈Λ

(b+Ā
+
x + d−Ā

−
x )[ψ

+
x,+ψ

−
x,− − ψ+

x,−ψ
−
x,+ + (180)

+χ+
x,+χ

−
x,− − χ+

x,−χ
−
x,+] + i

∑
x∈Λ

(b−Ā
−
x + d+Ā

+
x ) ·

·[ψ+
x,+ψ

+
x,− + ψ−

x,+ψ
−
x,− + χ+

x,+χ
+
x,− + χ−

x,+χ
−
x,−] +RB(Ā) ,

and V(ψ, χ) is given by (32).
Let D be the set of k’s such that k0 =

2π
L
(n0+

1
2
) and k1 =

2π
L
(n1+

1
2
), for

n0, n1 = −L
2
, . . . , L

2
−1, and L and even integer. Then, the Fourier transform

for the fermions with antiperiodic boundary condition is defined by

ψεx,ω
def
=

1

|Λ|
∑
k∈D

eiεkxψ̂εk,ω . (181)

Therefore (179) can be written as

2.29 A(ψ,ms) + A(ψ′,ms′) =
u

2|Λ|
∑
k∈D

Φ+
kS(k)Φk , (182)

where

Φk = (ψ̂−
k,+, ψ̂

−
k,−, ψ̂

+
−k,+, ψ̂

+
−k,−) ,

Φ+
k = (ψ̂+

k,+, ψ̂
+
k,−, ψ̂

−
−k,+, ψ̂

−
−k,−) , (183)

and , if we define µ(k) as in (28) and

D̂ω(k) = −i sin k0 + ω sin k1 ,

σ(k) =
v

u
(cos k0 + cos k1 − 2) + 2

v

u
,

the matrix S(k) is given by

sds S(k) =



D̂−(k) iµ(k) v
u
D̂−(k) iσ(k)

−iµ(k) D̂+(k) −iσ(k) v
u
D̂+(k)

v
u
D̂−(k) +iµ(k) D̂−(k) iσ(k)

−iµ(k) v
u
D̂+(k) −iσ(k) D̂+(k)


. (184)

In the case J = J ′ we have v = 0 and σ(k) ≡ 0, so that we get the much
simpler equation

A(ψ,ms) + A(ψ′,ms′) = − 1

|Λ|
∑
k∈D

∑
ω,ω′

ψ̂+
k,ωψ̂

−
k,ω′Tω,ω′(k) , (185)
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with Tω,ω′(k) given by (27) and

A(χ,Ms) + A(χ′,Ms′) = − 1

|Λ|
∑
k∈D

∑
ω,ω′

χ̂+
k,ωχ̂

−
k,ω′T

χ
ω,ω′(k) , (186)

T χ(k) being the matrix obtained from T (k) by substituting µ(k) with (29).
Moreover, εq′ε = qε, so that dε = 0 and bε = qε; it follows that B(Ā) can be
written as in (30). This completes the proof of (25).
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