Particle states transforming in one of the infinite spin representations of the Poincar, group (as classified by E. Wigner) are consistent with fundamental physical principles, but local fields generating them from the vacuum state cannot exist. While it is known that infinite spin states localized in a spacelike cone are dense in the one-particle space, we show here that the subspace of states localized in any double cone is trivial. This implies that the free field theory associated with infinite spin has no observables localized in bounded regions. In an interacting theory, if the vacuum vector is cyclic for a double cone local algebra, then the theory does not contain infinite spin representations. We also prove that if a Doplicher-Haag-Roberts representation (localized in a double cone) of a local net is covariant under a unitary representation of the Poincar, group containing infinite spin, then it has infinite statistics. These results hold under the natural assumption of the Bisognano-Wichmann property, and we give a counter-example (with continuous particle degeneracy) without this property where the conclusions fail. Our results hold true in any spacetime dimension s + 1 where infinite spin representations exist, namely s >= 2.

Longo, R., Morinelli, V., Rehren, K.-. (2016). Where infinite spin particles are localizable. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 345(2), 587-614 [10.1007/s00220-015-2475-9].

Where infinite spin particles are localizable

Longo R.
;
Morinelli V.;
2016-01-01

Abstract

Particle states transforming in one of the infinite spin representations of the Poincar, group (as classified by E. Wigner) are consistent with fundamental physical principles, but local fields generating them from the vacuum state cannot exist. While it is known that infinite spin states localized in a spacelike cone are dense in the one-particle space, we show here that the subspace of states localized in any double cone is trivial. This implies that the free field theory associated with infinite spin has no observables localized in bounded regions. In an interacting theory, if the vacuum vector is cyclic for a double cone local algebra, then the theory does not contain infinite spin representations. We also prove that if a Doplicher-Haag-Roberts representation (localized in a double cone) of a local net is covariant under a unitary representation of the Poincar, group containing infinite spin, then it has infinite statistics. These results hold under the natural assumption of the Bisognano-Wichmann property, and we give a counter-example (with continuous particle degeneracy) without this property where the conclusions fail. Our results hold true in any spacetime dimension s + 1 where infinite spin representations exist, namely s >= 2.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Longo, R., Morinelli, V., Rehren, K.-. (2016). Where infinite spin particles are localizable. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 345(2), 587-614 [10.1007/s00220-015-2475-9].
Longo, R; Morinelli, V; Rehren, K-
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
LMRinfspin.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 611.12 kB
Formato Adobe PDF
611.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/227519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact