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Abstract: Particle states transforming in one of the infinite spin representations of the
Poincaré group (as classified by E. Wigner) are consistent with fundamental physical
principles, but local fields generating them from the vacuum state cannot exist.While it is
known that infinite spin states localized in a spacelike cone are dense in the one-particle
space, we show here that the subspace of states localized in any double cone is trivial.
This implies that the free field theory associated with infinite spin has no observables
localized in bounded regions. In an interacting theory, if the vacuum vector is cyclic for a
double cone local algebra, then the theory does not contain infinite spin representations.
We also prove that if a Doplicher–Haag–Roberts representation (localized in a double
cone) of a local net is covariant under a unitary representation of the Poincaré group
containing infinite spin, then it has infinite statistics. These results hold under the natural
assumption of the Bisognano–Wichmann property, and we give a counter-example (with
continuous particle degeneracy) without this property where the conclusions fail. Our
results hold true in any spacetime dimension s + 1 where infinite spin representations
exist, namely s ≥ 2.

1. Introduction

The classical notion of particles as pointlike objects is meaningless in quantummechan-
ics. Here the wave function satisfies the Schrödinger equation and the Heisenberg uncer-
tainty relation prevents a sharp localization; increasing energy is needed for better local-
ization. We are going to discuss the intrinsic particle localization properties, and show
why infinite spin particles exhibit an essential difference from finite spin particles in this
respect.
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Wigner particles and classification of Poincaré group representations. In relativistic
quantum mechanics, one better defines a particle through its symmetry, rather than
localization, property. The Schrödinger equation is replaced by the Lorentz invariant
Klein–Gordon equation and this point of view led to define a particle as an irreducible,
positive energy, projective unitary representation of the Poincaré group P↑

+ , hence to
an irreducible, positive energy, unitary representation of the double (universal) cover
of P↑

+ . These are the “minimal” Poincaré covariant objects, the building blocks of any
more complete theory.

Within this point of view, Wigner [34] obtained his famous classification of the
irreducible, positive energy, unitary representations of the double cover of P↑

+ , which is
isomorphic to R

4
� SL(2, C).

We briefly recall that a unitary, positive energy representation U is classified, up to
unitary equivalence, by two parameters m and s. The mass m takes values in [0,∞)

(the lower point in the energy spectrum). If m > 0, then the values of the spin s are
0, 1

2 , 1,
3
2 , 2, . . . (the unitary representations of the cover of the rotation subgroup).

In the mass zero case, the representations fall into two distinct classes according to
the representations of the little group, which is the double cover of E(2), the Euclidean
group of the plane. The representation with trivial E(2)-translations are representations
of the (double) torus, labelled by the helicity, a parameter s that takes the place of the
spin, s = 0, 1

2 , 1,
3
2 , 2, . . ..

The remaining massless representations correspond to infinite-dimensional, irre-
ducible representations of the double cover of E(2) and are labelled by a parameter
κ > 0 (the radius of the circle that is the joint spectrum of the E(2)-translations) and
a ± sign (Bose/Fermi alternative). They are called infinite spin (or continuous spin)
representations.

Infinite spin particles have so far not been observed in nature, although they are
compatible with all physical first principles, and are usually disregarded without further
explanation. A result by Yngvason [36] shows that they cannot appear in a Wightman
theory [36] since no Wightman fields (which have pointlike localization) transforming
under an infinite spin representation can exist. One of the main aims of this paper is to
study the peculiar localization property of these particles, so as to explainwhy they are not
observable in finite space and time. They are however localizable in certain unbounded
spacetime regions [4] (cf. also [17]). Indeed, the authors of [27] have constructed such
fields�(x, e), which are localized along rays x +R+ ·e, where e is a spacelike direction.

We mention at this point that more general notions of particles are necessary to
describe situations where, for example, infrared clouds are present, cf. [6]; these will
not be considered in the present paper.

The main body of this article deals with the issue of localization of (one-particle)
states. In Sect. 9, we present some consequences for the localization of algebras of
observables (in the sense of spacelike commutation relations). The one-particle results
directly pass to free fields by second quantization, and we shall discuss general results
in the interacting case.

Localized particle states. Given a particle, namely an irreducible, positive energy rep-
resentation U of P↑

+ , what are the localized states of U?
If we restrict our attention to finite spin particles, the answer is well known in the

quantum field theory context, where one assumes the existence of a local free field
transforming in a given representation. In the scalar case, for simplicity, the one-particle
Hilbert space H can be obtained by equipping the Schwartz function space S(Rs+1)
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with a scalar product, given by the two-point function ( f, g) = (�( f )�,�(g)�) of the
field. Its Hilbert space closureH can be viewed as the space of positive energy solutions
to the Klein–Gordon wave equation, and carries an irreducible representation U of P↑

+
with zero spin/helicity. The localization of one-particle states is given by the support of
the Schwartz functions: by assigning to an open region X the closed real linear subspace
H�(X) ⊂ H, the closure of the space of real smooth functions with support in X , one
obtains a local U -covariant net of standard subspaces of H (see below). The locality
of the field, together with the identity i�( f, g) = (�, [�( f )∗,�(g)]�), imply that
two subspaces H�(X) and H�(Y ) are symplectically orthogonal whenever X and Y are
spacelike separated.

In the sequel, we describe the procedure of modular localization, which intrinsically
associates with a given representation the states localized in a region X , without referring
to a local field.

Terminology. A wedge region W is a Poincaré transform of the standard wedge W0 =
{x ∈ R

4 : x3 > |x0|}, andW is the set of all wedge regions. The standard one-parameter
family of boosts preserving W0 is called �W0(t), and we put �W (t) := g�W0(t)g

−1

if W = g(W0). A double cone O is the open intersection of a future and a backward
light cone, andO is the set of all double cones. A spacelike cone is a region of the form
C = x +

⋃
t>0 t · O where x ∈ R

4 and O ∈ O is a double cone spacelike to the point
0, and C is the set of all spacelike cones. Two regions X, Y are spacelike separated if
every pair of points (x, y) ∈ X × Y is spacelike separated. The spacelike complement
of a region X is denoted by X ′.
Standard subspaces. LetH be a Hilbert space. A standard subspace H ofH is a closed,
real linear subspace that is cyclic (H + i H is dense) and separating (H ∩ i H = {0}).
Standard subspaces of the one-particle space naturally appear in the above free field
construction: the standardness of H�(O) is equivalent to the Reeh–Schlieder property
that the vacuum vector is cyclic and separating for the corresponding local vonNeumann
algebras A(O) [1].

If H is a standard subspace, the Tomita operator S : ξ + iη �→ ξ − iη, ξ, η ∈ H ,
remembers H as H = Ker(S − 1), and its polar decomposition S = J�1/2 gives the
modular operator � and the modular conjugation J that satisfy the one-particle version
of the Tomita–Takesaki theorem:

�i t H = H ∀ t ∈ R , J H = H ′, (1)

where H ′ is the symplectic complement of H .

The Bisognano–Wichmann property. Now, let U be a positive energy representation of
P↑
+ onH, andW � W �−→ H(W ) a net of standard subspaces on the wedge regions of

the Minkowski spacetime R
4, which is U -covariant:

U (g)H(W ) = H(gW ).

The Bisognano–Wichmann property [2] asserts that the modular group of H(W ) is
related to the boost transformations �W preserving W :

�i t
W = U

(
�W (−2π t)

)
. (2)

If H(C) is cyclic for all cones C , then JW acts geometrically as a reflection around the
edge of the wedge, so there exists an anti-unitary PCT operator


 ≡ U (RW )JW , (3)

where RW is the spatial π -rotation mapping W onto W .
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In quantum field theory, the Bisognano–Wichmann property pertains to the standard
subspacesA(W )s.a.�, whereA(W )s.a. is the selfadjoint part of the vonNeumann algebra
of local observables in a wedge. It was establishedmodel-independently for large classes
of quantum field theories, cf. Sect. 10.3. Because the modular group is characterized by
the KMS property, its physical meaning is that the vacuum state is a KMS state for the
boost subgroup, when restricted to the algebra of a Rindler wedge; in other words, the
restriction of the vacuum state is a thermal state for the geodesic observer on the Rindler
spacetime. By this feature it is closely related to theHawking–Unruh effect.We therefore
believe the Bisognano–Wichmann property to be of a most fundamental character, and
refer to the final comment 10.3 and to [14] for a discussion of this important point.

Modular localization. The paper [4] provided a canonical construction of a local net HU
of standard subspaces on the wedge regions of the Minkowski spacetime R

4 associated
with any unitary, positive energy, representation U of the Poincaré group (with anti-
unitary PCT operator 
). One defines �W and JW by the Eqs. (2), (3), then sets SW ≡
JW�

1/2
W and

HU (W ) ≡ {
ξ ∈ H : SW ξ = ξ

}
. (4)

Isotony of the assignment W �−→ HU (W ) (i.e., HU (W1) ⊂ HU (W2) whenever W1 ⊂
W2) follows from positivity of the energy. Moreover HU is local (or twisted-local if we
consider representations of the cover of the Poincaré group), indeed HU is wedge dual:
HU (W ′) = HU (W )′.

This construction is intrinsic, depending only on the representation U without ref-
erence to a quantum field. By construction, HU satisfies the Bisognano–Wichmann
property.

Notice that any net W �−→ H(W ) on wedges defines closed, real linear subspaces
associated with any region X that is contained in some wedge:

H(X) ≡
⋂

W�W⊃X

H(W ). (5)

Obviously, these definitions respect isotony (H(X1) ⊂ H(X2) whenever X1 ⊂ X2),
and locality.

If H(O) is cyclic for double cones O , then H(W ) defined by additivity from the
double cones coincides with the original H(W ) (assuming the Bisognano–Wichmann
property).

A general result [4] shows furthermore that HU (C) defined as in (5) from the canon-
ical net (4) is standard for spacelike cones C ∈ C, for every representation U .

If U is a representation with finite spin/helicity, then the modular localization sub-
space HU (X) as in (5) agrees with the standard subspace H�(O) defined by the free field
one-particle construction recalled above, therefore HU (O) is standard for any double
cone O , and in this case we explicitly see how the space H(X) of particle states localized
in a bounded region X is cyclic.

We should also comment that the paper [4] deals with the bosonic case (true rep-
resentation of P↑

+ ); however, the fermionic case can be treated analogously with usual
modifications (and quantization on the anti-symmetric Fock space).

Infinite spin particles cannot be localized in bounded regions. As recalled, in Wigner’s
classification of unitary, positive energy, irreducible representations of the Poincaré
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group [34], massless representations fit into two classes, the ones with finite spin (helic-
ity) and the ones with infinite spin, according to the representations of the “little group”,
the double cover Ẽ(2) of the Euclidean group of the plane E(2).

LetU be a massless representation with infinite spin; the space HU (C)was shown to
be standard (cyclic) for spacelike cones but it remained open whether there are non-zero
vectors localized in bounded regions [12].Generalized (stringlike)Wightmanfields asso-
ciated with U were later constructed [27], but the above localization problem remained
unsettled.

We shall show here that HU (X) is trivial if X is bounded, say X = O a double cone,
namely

HU (O) ≡
⋂

W�W⊃O

HU (W ) = {0}.

Quantum Field Theory, I.An immediate consequence is that the free field netA of local
vonNeumann algebras associatedwith a representationU ofP↑

+ with infinite spin is well
defined, the vacuum vector is cyclic forA(C) if C is a spacelike cone, butA(O) = C ·1
if O is a double cone: there is no non-trivial observable localized in a bounded spacetime
region.

It also follows that there are no compactly localized observables on the same Hilbert
space that are relatively local w.r.t. the infinite spin free field net. The absence of such
observables was recently also demonstrated within an explicit field theoretic ansatz [18].

An important more general corollary is that, if B is any (Fermi-)local net of von
Neumann algebras on a Hilbert space, covariant under a unitary positive energy repre-
sentationU of the Poincaré group, with the vacuum vector being cyclic (Reeh–Schlieder
property) for double cone algebras, then no infinite spin representation can appear in
the irreducible direct integral decomposition of U (up to measure zero), provided that
B satisfies the fundamental Bisognano–Wichmann property [2].

This shows why infinite spin particles do not appear in a theory of local observables.
They are however compatible with stringlike localization. At this point it is worth men-
tioning that localization in spacelike cones is natural in quantum field theory, indeed
massive charges may always be localized in spacelike cones [5]. Low-dimensional non-
trivial models with trivial local algebras are exhibited in [20].

Strategy of proof. Let U be a unitary, massless irreducible representation of P↑
+ . The

starting point is the observation thatU is dilation covariant if and only if it has finite spin.
Assuming HU (O) to be standard for double cones O , we infer by the Huygens principle
that HU (V+) is standard, where V+ is the forward light cone. By standard subspace
analysis, in particular by using an analogue of Borchers’ theorem [3,24], �HU (V+) has
dilation commutation relations with U . So U must have finite spin.

Extensions of results. Our results hold in any space dimension s ≥ 2. As is known, if s
is even the Huygens principle doesn’t hold and we need to work with a corresponding
property of the wave equation that we haven’t found in the literature. The case s = 2
is peculiar as the infinite spin representations are not “infinite”, namely they are associ-
ated with one-dimensional representations of the little group. The Fermi case, namely
representations of a cover of P↑

+ , is also studied. We treat the case s = 3 (the physical
Minkowski spacetime) in detail and add a further section with the necessary analysis in
different spacetime dimensions.

Quantum Field Theory, II. For interacting theories satisfying the Bisognano–Wichmann
property, we show that the subspace B(O)� (independent of the double cone O) cannot
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carry an infinite spin representation. Thus, if the theory possesses infinite spin particles,
then the vacuum vector cannot be cyclic for B(O), where B is the local net of von
Neumann algebras describing our theory, i.e., the infinite spin particle states cannot be
generated from the vacuum by operations in bounded spacetime regions.

Indeed, no infinite spin particle state can be obtained by adding to B a finite charge
localized in a bounded spacetime region. In other words, no infinite spin representation
can appear in the irreducible disintegration of the covariance unitary representation of
DHR sectors of B (with finite statistics).

We emphasize that the Bisognano–Wichmann property is essential in the argument,
by providing a counter-examplewithout this property, inwhich free infinite spin particles
exist with cyclic double cone algebras.

Thus, at least one (artificial) way to accomodate new physics involving observable
infinite spin particles would consist in relaxing the Bisognano–Wichmann property—in
spite of its very fundamental nature. More interesting is the picture (Sect. 10.1) that we
obtain when we start with a (compactly) local observable net; we have a field algebra net
that generates a non-trivial but non-cyclic subspace, an interacting theory with infinite
spin particles; this structure exactly complies with the picture envisaged in [30].

2. Standard Subspaces

We begin by recalling some definitions and results on standard subspaces and their
modular structures. Further details can be found in [24,25].

A linear, real, closed subspace H of a complex Hilbert space H is called cyclic if
H + i H is dense in H, separating if H ∩ i H = {0} and standard if it is cyclic and
separating.

Given a standard subspace H one defines the Tomita operator SH , the closed, anti-
linear involutionwith domain H+i H , given by SH : ξ+iη �→ ξ+iη, ξ, η ∈ H . The polar
decomposition SH = JH�

1/2
H defines the positive selfadjointmodular operator �H and

the anti-unitary modular conjugation JH . �H is invertible and JH�H JH = �−1
H .

Pairs (J,�), where J is an anti-unitary involution and� a selfadjoint positive invert-
ible operator s.t. J�J = �−1 are in 1-1 correspondencewith closed, anti-linear, densely
defined involutions S = J�1/2 and in 1-1 correspondence with standard subspaces
H = Ker(S − 1).

If H is a closed, real linear subspace ofH, the symplectic complement of H is defined
by

H ′ ≡ {ξ ∈ H ; �(ξ, η) = 0 ∀η ∈ H} = (i H)⊥R ,

where⊥R denotes the orthogonal inH viewed as a real Hilbert space with respect to the
real part of the scalar product. H ′ is a closed, real linear subspace of H and H = H ′′.

H is cyclic (separating) iff H ′ is separating (cyclic), thus H is standard iff H ′ is
standard and we have

SH ′ = S∗
H .

The fundamental properties of the modular operator and conjugation are

�i t
H H = H, JH H = H ′ , t ∈ R,

and t �→ �i t
H is called the one-parameter unitary modular group of H (cf. [29,33]).
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Let H be a real linear subspace ofH and V a one-parameter group of unitaries onH
such that V (t)H = H, t ∈ R. V satisfies the KMS condition with inverse temperature
β > 0 on H if, for every given ξ, η ∈ H , there exists a function F , analytic on the strip
{z ∈ C : 0 < �z < 1}, bounded and continuous on its closure, such that:

F(t) = 〈η, V (t)ξ 〉 , t ∈ R ,

F(t + iβ) = 〈V (t)ξ, η〉 , t ∈ R.

Since the uniform limit of holomorphic functions is holomorphic, it follows that if the
KMS condition holds on H , then it holds on the closure H of H .

Lemma 2.1 [24,25]. If H ⊂ H is a standard subspace, then t �→ �−i t
H satisfies the

KMS condition at inverse temperature 1.
Conversely, if H is a closed, real linear, cyclic subspace ofH and V a one-parameter

unitary group on H with V (t)H = H, t ∈ R, satisfying the KMS condition on H at
inverse temperature 1, then H is standard and V (t) = �−i t

H .

The following lemma is a consequence of the KMS condition for the modular group.

Lemma 2.2 [24,25]. Let H ⊂ H be a standard subspace, and K ⊂ H a closed, real
linear subspace of K .

If �i t
H K = K , ∀t ∈ R, then K is a standard subspace of K ≡ K + i K and �H |K is

the modular operator of K onK. If moreover K is a cyclic subspace ofH, then H = K.

We shall also need the following basic lemma.

Lemma 2.3 [24,25]. Let H ⊂ H be a standard subspace, and U a unitary on H such
that UH = H. Then U commutes with �H and JH .

The following is the one-particle analogue of Borchers’ theorem [3].

Theorem 2.4 [24,25]. Let H ⊂ H be a standard subspace, and U a one-parameter
unitary group on H with positive generator, such that U (t)H ⊂ H, t ≥ 0. Then
�is

HU (t)�−is
H = U (e−2πs t).

We now want to study the tensor product of standard subspaces. Let H and K be stan-
dard subspaces of the Hilbert spaces H and K respectively, and SH , SK the associated
Tomita operators. Then S ≡ SH ⊗ SK is a closed, densely defined anti-linear involution.
Therefore S = SM where M ≡ {

ξ ∈ Dom(S) : Sξ = ξ
}
is a standard subspace of

H ⊗ K.
We define the tensor product of H and K by H ⊗ K ≡ M ; in other words H ⊗ K

is defined through the formula

SH⊗K ≡ SH ⊗ SK .

Proposition 2.5. If H and K are standard subspaces ofH and K respectively, we have

(H ⊗ K )′ = H ′ ⊗ K ′.

Proof. Immediate from the equality

S(H⊗K )′ = S∗
H⊗K = (

SH ⊗ SK
)∗ = S∗

H ⊗ S∗
K = SH ′⊗K ′ .

��
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With H, K real linear subspaces of H and K respectively we denote by H � K the
real linear span of {ξ ⊗ η : ξ ∈ H, η ∈ K }.

Proposition 2.6. Let H and K be standard subspaces ofH and K. We have:

H ⊗ K = H � K .

Proof. H � K is cyclic since H �K + i H �K = (H + i H)� (K + i K ), which is dense
inH⊗K. Clearly H �K is in the domain of SH ⊗ SK = SH⊗K , thus H �K ⊂ H ⊗K .
Now �i t

H⊗K = �i t
H ⊗ �i t

K leaves globally invariant H � K , hence H � K . By Lemma
2.2 we conclude that H � K is equal to H ⊗ K . ��

By Proposition 2.6, we may equivalently define the tensor product of the closed, real
linear subspaces H and K ofH and K by H ⊗ K ≡ H � K .

Given a family of real linear subspaces Ha ofH, we shall denote by
∑

a Ha the real
linear span of the Ha’s.

Lemma 2.7. Let {Ha} be a family of closed, real linear subspaces of H. Then

( ⋂

a

Ha

)′ =
∑

a

H ′
a .

Proof. We have

( ⋂

a

Ha

)′ =
(
i
⋂

a

Ha

)⊥R =
( ⋂

a

i Ha

)⊥R =
∑

a

(i Ha)⊥R =
∑

a

H ′
a .

��
Lemma 2.8. Let {Ha} and {Kb} be families of standard subspaces of H and K respec-
tively, and suppose both the intersections H ≡ ⋂

a Ha and K ≡ ⋂
b Kb to be cyclic.

We have:

H ⊗ K =
⋂

a,b

(
Ha ⊗ Kb

)
.

Proof. By Lemma 2.7 we have to show that

(H ⊗ K )′ =
∑

a,b

(
Ha ⊗ Kb

)′
.

By Proposition 2.5, we have indeed:

(
H ⊗ K

)′ = H ′ ⊗ K ′ =
∑

a

H ′
a ⊗

∑

b

K ′
b =

∑

a,b

H ′
a ⊗ K ′

b =
∑

a,b

(
Ha ⊗ Kb

)′
.

��
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3. Massless Representations of the Poincaré Group

For the benefit of the reader, we first deal within the case of the four-dimensional space-
time, later extending our results to different dimensions.

If G is a locally compact group, H ⊂ G a closed subgroup, and V a unitary rep-
resentation of H , we denote by IndH↑G V the unitary representation of G induced by
V .

ThePoincaré groupP↑
+ is the semi-direct productR4

�L↑
+ of the proper orthochronous

Lorentz group L↑
+ and the translation group R

4, where L↑
+ acts naturally on R

4.
The universal cover L̃↑

+ ofL↑
+ is a double cover, isomorphic to SL(2, C). Accordingly,

the universal cover P̃↑
+ of P↑

+ is isomorphic to R
4

� SL(2, C).
One can choose the covering map σ : SL(2, C) → L↑

+, so that σ maps the one-
parameter subgroup α

α(t) =
(
et/2 0
0 e−t/2

)

, t ∈ R, (6)

to the one-parameter group of boosts in the x3-direction, and σ restricts to the usual
covering map SU(2) → SO(3). Explicitly, one identifies a vector x = (x0, x1, x2, x3) ∈
R
4 with the matrix Xx = ( x0+x3 x1−i x2

x1+i x2 x0−x3

)
and defines the Lorentz transformation σ(A) ∈

L↑
+ acting on x through Xσ(A)x = AXx A∗, A ∈ SL(2, C), see [32].

The translation group R
4 is thus also a normal subgroup of P̃↑

+ . According to the
Mackey machine (see [37]), if U is an irreducible unitary representation of P̃↑

+ , then U
is induced by an irreducible unitary representation U0 of Stabp:

U = Ind
Stabp↑P̃↑

+
U0; (7)

here the momentum p ∈ R
4 is a point in the dual group of the translations (i.e., a

character), Stabp is the stabilizer of p for the action of P̃↑
+ on the characters given by

the adjoint action on their arguments, and U0|R4 is the one-dimensional representation
p.

Notice that L̃↑
+ acts naturally on R

4 and R
4 acts trivially on itself, so one has

Stabp = R
4

� Stabp,

where Stabp ⊂ L̃↑
+ is the stabiliser of p in L̃↑

+ acting naturally on R
4 (the little group).

Points p in the same L↑
+-orbit give rise to equivalent representations.

We are interested in a positive energy, massless representation U , thus p ∈ ∂V+ the
boundary of the forward light cone. We assumeU is not the identity, thus p �= 0 and we
shall choose and fix p = q with

q ≡ (1, 0, 0, 1) ∈ ∂V+

(∂V+�{0} is a L↑
+-orbit).

Then Stabq , the little group of (1, 0, 0, 1), is isomorphic to Ẽ(2), the double cover
of the Euclidean group of the plane E(2):

Stabq =
{(

u z
0 ū

)

: u, z ∈ C, |u| = 1

}

. (8)
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The irreducible representation U0 of Stabp in (7) has the form

U0(g, x) = V (g)q(x), g ∈ Stabq , x ∈ R
4, (9)

where V is an irreducible representation of Stabq = Ẽ(2) and q is the character of R
4.

Now Ẽ(2) is the semi-direct product R
2

� T and an irreducible representation V of
Ẽ(2) fits in one of the following two classes:

(a) The restriction of V to R
2 is trivial;

(b) The restriction of V to R
2 is non-trivial.

Irreducible representations of Ẽ(2) in class (a) are thus labelled by the integers, the dual
of T, while irreducible representations in class (b) are labelled by κ > 0, the radius of
a circle in R

2, the joint spectrum of the Ẽ(2)-translations.
We say in case (a) that U has finite spin (or finite helicity); in case (b) that U has

infinite spin. Therefore an irreducible, infinite spin representationU of P̃↑
+ has the form

Uκ,ε = Ind
Stabq↑P̃↑

+
V̄κ,ε (10)

where V̄κ,ε is given by (9):

V̄κ,ε(g, x) = Vκ,ε(g)q(x), g ∈ Ẽ(2), x ∈ R
4,

with V = Vκ,ε is the representation of Ẽ(2) in which the spectrum of the translations is
the circle of radius κ > 0, and the rotation by 2π is represented by +1 (bosonic case,
ε = 0) resp. by −1 (fermionic case, ε = 1

2 ); so infinite spin representations are labelled
by κ > 0 and ε = 0, 1

2 .We shall denote by τ(z), z ∈ C, the element of Ẽ(2) ⊂ SL(2, C)

given by

τ(z) =
(
1 z
0 1

)

;

the two translation one-parameter subgroups of Ẽ(2) are R � x �→ τ(x), and R � y �→
τ(iy) and we have the commutation relations

α(t)τ (z)α(t)−1 = τ(et z). (11)

4. Infinite Spin Representations are Not Dilation Covariant

As is known, an irreducible,massless finite helicity unitary representation extends, on the
sameHilbert space, to a representation of the group of transformations of theMinkowski
spacetime generated by P̃↑

+ and dilations (indeed to a unitary representation of the
conformal group). We show here that irreducible infinite spin representations are not
dilation covariant in this sense. We suppress the Bose/Fermi label ε which is irrelevant
for the issue at hand.

Lemma 4.1. Let G be a locally compact group, H ⊂ G a closed subgroup and β an
automorphism of G such that β(H) = H. If V is a unitary representation of H and
U ≡ IndH↑G V , then

U · β = IndH↑G V · β0

where β0 ≡ β|H .
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Proof. The lemma follows by the unicity of the induced representation, a consequence
of the unicity of the measure class of a quasi-invariant Borel measure on H\G. ��
Corollary 4.2. Let Uκ = Ind

R4�Ẽ(2)↑P̃↑
+
V̄κ be an infinite spin, irreducible unitary

representation of P̃↑
+ , and β an automorphism of P̃↑

+ preserving the element q of (the
dual of) the translation subgroup. Then β(Stabq) = Stabq and

Uκ · β = Uκβ

(
≡ Ind

R4�Ẽ(2)↑P̃↑
+
V̄κβ

)
,

where κβ is given by Vκβ = Vκ · β0 with β0 the automorphism of Ẽ(2) given by β0 =
β|Stabq
Proof. This follows from Lemma 4.1. ��

We shall say that a unitary representationU of P̃↑
+ on the Hilbert spaceH is dilation

covariant if U extends to a unitary representation on H of the group generated by P̃↑
+

and dilations. Namely there exists a one-parameter unitary group D(t) on H such that
D commutes with U |L̃+

and

D(t)U (x)D(−t) = U (et x),

for x in the translation group R
4.

Proposition 4.3. Let U be an irreducible, positive energy, unitary representation of P̃↑
+ .

Then U is dilation covariant iff U is massless with finite spin.

Proof. Let δt the the automorphism of P̃↑
+ given by δt (g) = g if g ∈ L̃+ and δt (p) = et p

if p ∈ R
4. We want to show that U is inequivalent to U · δt , t �= 0, if U is irreducible

with infinite spin.
Let then U = Uκ be given by (7), namely Uκ = Ind

R4�Ẽ(2)↑P̃↑
+
Ṽκ . We shall show

that

Uκ · δt = Ue−tκ .

This will prove the Proposition because Uκ and Uκ ′ are inequivalent if κ �= κ ′.
Now let αt be the lift to P̃↑

+ of the inner one-parameter automorphism group of P↑
+

implemented by the boost in 3-direction, namely α is given by Eq. (6). Then

αt (q) = δt (q) = (et , 0, 0, et ),

where q = (1, 0, 0, 1) as above. Thus the automorphisms

βt ≡ α−t · δt (12)

fix q. Since α−t is inner, we have Uκ · α−t = Uκ , thus

Uκ · δt = Uκ · α−t · δt = Uκ · βt .

We now apply Corollary 4.2 and see that

Uκ · δt = Uκ ′

where κ ′ is given by

Vκ ′ = Vκ · βt |Ẽ(2) = Vκ · α−t |Ẽ(2),

thus κ ′ = e−tκ by the commutation relation (11) [36, Lemma 4]. ��
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5. Double Cone Localization Implies Dilation Covariance

LetU be a unitary, positive energy representation of the cover P̃↑
+ of the Poincaré group

on a Hilbert space H.
A U -covariant net of standard subspaces H on the set W of wedge regions of the

Minkowski spacetime is a map

H : W � W �−→ H(W ) ⊂ H

that associates a closed real linear subspace H(W ) with each W ∈ W , satisfying:

1. Isotony: if W1 ⊂ W2 then H(W1) ⊂ H(W2);
2. Poincaré covariance: U (g)H(W ) = H(gW ), g ∈ P̃↑

+ ;
3. Reeh–Schlieder property: H(W ) is cyclic ∀ W ∈ W;
4. Bisognano–Wichmann property:

�i t
H(W ) = U

(
�W (−2π t)

)
, ∀ W ∈ W;

5. Twisted locality: For every wedge W ∈ W we have

ZH(W ′) ⊂ H(W )′

with Z unitary, Z = 1 + i�

1 + i
.

Due to twisted locality, each H(W ) is indeed a standard subspace, so the modular
operators in Property 4 are defined.

Here � ≡ U (2π), the unitary corresponding to a 2π spatial rotation in the represen-
tation U , namely � is the image under U of the non-trivial element in the centre of L̃↑

+.
Clearly �, hence Z , commutes with U .

Notice that ifU is bosonic (� = 1), then Z = 1, and twisted locality is locality. IfU
is fermionic (� = −1), then Z = −i and H(W ′) ⊂ i H(W ).

Lemma 2.2 then implies twisted duality for wedges:

H(W ′) = ZH(W )′.

Starting with a U -covariant net H on W as above, one gets a net of closed, real linear
subspaces on double cones O defined by

H(O) ≡
⋂

W�W⊃O

H(W ). (13)

Note that H(O) is not necessarily cyclic. If H(O) is cyclic, then

H(W ) =
∑

O⊂W

H(O)

by Lemma 2.2.
The following proposition is proved in [4], (ii) ⇒ (i), and in [12], (i) ⇒ (ii), for nets

of von Neumann algebras; yet the same argument gives a proof in the standard subspace
setting.

Proposition 5.1 [4,12]. Let H be aU-covariant net of standard subspaces ofH as above
(properties 1–5). The following are equivalent:
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(i) H(C) ≡ ⋂
W�W⊃C H(W ) is cyclic for all spacelike cones C ;

(ii) U extends to an (anti-)unitary representation Û of P̃+ onH and H is the canonical
net HÛ associated with Û (Eq. (4)).

Thus (in even spacetime dimension), with the above cone cyclicity assumption, there is
an anti-unitary PCT operator.

The following proposition ensures a variant of the Reeh–Schlieder property. If O, Õ
are double cones, we write O � Õ if the closure of O is contained in the interior of Õ .

Proposition 5.2. Let H(O) be defined as above in (13), with U irreducible. If H(O) �=
{0} for some double cone O , then H(Õ) is cyclic for every double cone O � Õ.

Proof. Let O � Õ be double cones with H(O) �= {0} and ξ a vector orthogonal to
H(Õ). We can find a δ > 0 s.t. x + O ⊂ Õ , so

f (x) ≡ 〈ξ,U (x)Zη〉 = 0,

for |x | < δ and η ∈ H(O), where U (x) is the unitary translation by x . By positivity of
the energy, f has an analytic continuation on the tube R

4 − iV +. Since f (x) = 0 on an
open subset of the boundary, by the Edge of the Wedge theorem f is identically zero.
Thus ξ is orthogonal to all translates H(O + x).

We consider now a wedgeW ⊃ Õ and the corresponding boost one-parameter group
�W . By the KMS property entailed by the Bisognano–Wichmann property, there exists
an analytic extension of the function h:

h(s) ≡ 〈ξ,U
(
�W (2πs)

)
Zη〉,

on the strip {z ∈ C : 0 < � z < 1}. Because O � Õ, h(s) is zero for small real values
of s. Thus the whole extension of h has to be zero. It follows that

ξ ⊥ H(gO), ∀g ∈ P↑
+ .

Now the closed, complex linear span generated by
{
H(gO) : g ∈ P↑

+
}
is aU -invariant,

non-zero, closed linear subspace of H, that must be equal to H since U is irreducible.
Thus ξ = 0 and H(Õ) is cyclic. ��
Lemma 5.3. Assume that U is a massless, unitary representation of P̃↑

+ acting covari-
antly on a twisted-local net of closed, real linear subspaces on double cones. Let O1, O2
be double cones with O2 in the timelike complement of O1, then

H(O2) ⊂ ZH(O1)
′.

Proof. Let Or be the double cone of radius r > 0 centred at the origin, namely Or is the
causal envelope of the ball of radius r centred at the origin in the time zero hyperplane.
Consider the two point function

f (x) = 〈ξ,U (x)Zη〉, ξ, η ∈ H(Or ).

Then � f = 0, namely f is a solution of the wave equation, since the Fourier transform
of f (w.r.t. the Minkowski metric) is a measure with support in ∂V+. In particular
�� f = 0. Now � f (x) = 0 if x ∈ O ′

2r , because Or + x ⊂ O ′
r . Thus, by the Huygens

principle for solutions of the wave equations, also� f (x) = 0 if x belongs to the timelike
complement of O2r . Thus H(Or + x) ⊂ ZH(Or )

′ for such x , namely for x such that
Or + x is contained in the timelike complement of Or . This entails the thesis as r > 0
is arbitrary. ��
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Proposition 5.4. Let U be a massless representation of P̃↑
+ , acting covariantly on a net

H of standard subspaces on wedges satisfying properties 1–5. If H(O) is cyclic for
some double cone O , then U is dilation covariant.

If U is irreducible, the same conclusion holds by assuming that H(O) �= {0} for
some double cone O.

Proof. Let H(V+) be the closed, real linear subspace generated by H(O) as O runs in
the double cones contained in V+, and similarly for H(V−). H(V+) (and H(V−)) is cyclic
as it contains a cyclic real linear subspace H(O) by assumptions (if H(O) is cyclic,
all its translated are cyclic). Since H(V+) ⊂ ZH(V−)′ by Proposition 5.4, H(V+) and
H(V−) are also separating, hence standard subspaces. Set

D(2π t) = �−i t
H(V+)

, t ∈ R.

Then, by Lemma 2.3, D(t) commutes with U (g) if g is in the Lorentz group, because
gV+ = V+, so U (g)H(V+) = H(V+).

Thanks to positivity of the energy, the one-particle version of Borchers’ theorem
(Theorem2.4) applies to all one-parameter groups of timelike translations. Since the
latter generate all translations, we conclude that D(s) scales the translations:

D(s)U (x)D(−s) = U (es x), s ∈ R,

if x is in the translation group. ThusU is dilation covariant, with dilation unitaries D(t).
The statement for U irreducible then follows immediately by Proposition5.2. ��

6. Infinite Spin States are Not Localized in Bounded Regions

We give here our main result.

Theorem 6.1. Let U be an irreducible unitary, positive energy, massless, infinite spin
representation of P̃↑

+ on a Hilbert space H, and H : W � W �−→ H(W ) ⊂ H a
U-covariant net of standard subspaces satisfying properties 1–5. Then

H(O) ≡
⋂

W�W⊃O

H(W ) = {0}, (14)

for every double cone O ∈ O.

Proof. If H(O) �= {0} for some double cone O , then by Proposition 5.4 U must be
dilation covariant, which is not possible by Proposition 4.3. ��
The consequences of this theorem in Quantum Field Theory will be discussed in Sect. 9.

7. A Counter-Example

In this section, we are going to see how dilation covariance and the double cone Reeh–
Schlieder property for infinite spin (reducible) representations may both hold if the
Bisognano–Wichmann property fails. We shall indeed show that a multiple of the direct
integral

∫ ⊕

R+

Uκdκ
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over all irreducible representations Uκ of P↑
+ of infinite spin κ is dilation covariant

and admits a local covariant net of standard subspaces, cyclic on double cones. Similar
examples were put forward in [28,35].

For the sake of the example, it is sufficient to consider representations V of SL(2, C)

that factor through L↑
+, i.e., V (1) = V (−1). Namely, V is a true representation of

L↑
+. Since the choice of the pre-image of the covering map σ does not matter in true

representations, we shall identify A ∈ SL(2, C) with σ(A) ∈ L↑
+ in this section, and

again suppress the corresponding label ε = 0.
The subgroup Ẽ(2) ⊂ SL(2, C), the pre-image of E(2) through σ , is given by (8).
Let U0 be the unitary, massless, zero helicity, representation of the Poincaré group

and V a real unitary representation L↑
+ on the Hilbert spacesH andK respectively. With

J an anti-unitary involution on K commuting with V, the vectors fixed by J form a
standard subspace K of K and V (L↑

+)K = K , JK = J, �K = 1. In particular the
constant net of standard subspaces K (W ) ≡ K is V -covariant.

We consider V as a representations of P↑
+ where the translation group acting identi-

cally.
Consider the following net of standard subspaces of K ⊗ H

HI : W � W �−→ HI (W ) ≡ K ⊗ H(W ) ⊂ K ⊗ H

where H ≡ HU0 is the canonical net associated with U0. There are two unitary repre-
sentations of the P↑

+ on K ⊗ H:

UV ≡ V ⊗U0

and

UI ≡ I ⊗U0,

where I is the identity representation of P↑
+ on K. Clearly UV and UI are massless

representations, as the energy-momentum spectrum is that of U0.
HI is the canonical net associated with UI . The net HI is both UV -covariant and

UI -covariant. Only UI satisfies the Bisognano–Wichmann property as, by Lemma 2.6,
the modular operator of K ⊗ H(W ) is 1 ⊗ �H(W ). Then by Lemma 2.8

HI (O) =
⋂

W⊃O

HI (W ) = K ⊗
⋂

W⊃O

H(W )

is cyclic, since
⋂

W⊃O H(W ) is cyclic inH.
So we have shown the following.

Proposition 7.1. The net HI of standard subspaces is local, UV -covariant, and cyclic
on double cones. UV decomposes into a direct integral of infinite spin representation.
UV does not satisfy the Bisognano–Wichmann property.

We notice that the canonical net HV associated with UV is not covariant under the
representation UI .

We will now show that UV decomposes in a direct integral of infinite spin represen-
tations if V does not contain the trivial representation.

Let V+\{0} � p �→ Bp ∈ L↑
+ be a continuous map, with Bp a Lorentz transformation

mapping q = (1, 0, 0, 1) to p.
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We can identify as usual the elements ofH with L2-functions on ∂V+�{0} w.r.t. the
Lorentz invariant measure, thus elements of K ⊗ H with K0-valued L2-functions.

The following unitary operator

K ⊗ H � (
p �→ φ(p)

) �−→ (
p �→ V (B−1

p )φ(p)
) ∈ K ⊗ H

intertwines UV with the representation U ′
V given by

(
U ′
V (a, A)φ

)
(p) = eia·pV (B−1

p ABA−1 p)φ(A−1 p), φ ∈ H. (15)

Since B−1
p ABA−1 p ∈ Stabq = E(2) we may consider the irreducible disintegration of

V |E(2), then U ′
V , thus UV , will accordingly disintegrate.

Since SL(2, C) is a simple, connected, non-compact Lie group with finite centre,
the vanishing of the matrix coefficients theorem by Howe–Moore [37] ensures that
limg→∞〈ξ, V (g)η〉 = 0, for all ξ, η ∈ K, if V does not contain the identity representa-
tion.

Lemma 7.2. Let V be a unitary representation of L↑
+ not containing the identity repre-

sentation. Then V |E(2) is a multiple of
∫ ⊕
R+

Vκdκ , where Vκ is the unitary irreducible
representation of E(2) with radius κ .

Proof. By the vanishing of the matrix coefficients theorem, there is no non-zero vector
fixed by V · τ , thus no radius zero representation appears in the irreducible direct inte-
gral decomposition of V |E(2), namely V |E(2) = ∫

R
m(κ)Vκdμ(κ), where m(κ) is the

multiplicity function and μ is a Borel measure on R+.
The one-parameter subgroup α of SL(2, C) given in (8) acts as dilation on the trans-

lations τ , Eq. (11), thus

V |E(2) =
∫ ⊕

R

m(κ)Vκdμ(κ) =
∫ ⊕

R

m(κ)Vetκdμ(κ) =
∫ ⊕

R

m(e−tκ)Vκdμt (κ) (16)

whereμt (κ) ≡ μ(e−tκ), and this implies that μt is equivalent toμ (thus μ is equivalent
to the Lebesgue measure) and m constant μ-almost everywhere. ��

The following Proposition is a consequence of the above Lemma.

Proposition 7.3. UV is a multiple of
∫ ⊕
R+

Uκdκ , where Uκ is the infinite spin, radius κ

representation of P↑
+ .

Proof. One considers the disintegration of V |E(2) obtained in Lemma 7.2 and concludes
the thesis by formula (15). ��

8. Extensions to Spacetime Dimension s ≥ 2

In this section we are going to extend Propositions 4.3 and 5.4, and hence also Theorem
6.1, in any spacetime dimensions s ≥ 2.
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8.1. Dilation covariance. We begin by discussing the dilation covariance property.
The proper Lorentz group is L+ ≡ L+(s) = SO(1, s), i.e., the group of d × d real

matrices A preserving the Minkowski metric 〈1,−1, . . . ,−1〉. L+ has two connected
components and we denote by L↑

+ the connected component of the identity.
L↑
+ is not simply connected when s > 1. Any element in L↑

+ is the product of a
rotation and a boost, so L↑

+ is homotopy equivalent to SO(s), whose first homotopy
group is Z2 if s > 2 and Z if s = 2 (see [19]). Therefore the universal covering L̃↑

+ of
L↑
+ is a double covering for s > 2, whereas it is an infinite sheet covering if s = 2. We

shall thus treat the case s = 2 separately.
The proper orthochronous Poincaré group P↑

+ ≡ P↑
+ (s) is the semi-direct product of

P↑
+ ≡ R

s+1
� L↑

+, with the natural action of L↑
+ on R

s+1.
We shall consider unitary representations of the universal covering group P̃↑

+ =
R
s+1

� L̃↑
+, as they correspond to the projective unitary, positive energy representations

of P↑
+ .
We are interested here in an irreducible, positive energy, massless representationU of

P̃↑
+ . We choose and fix the point q ≡ qs = (1, 0, . . . , 0, 1) in the Lorentz orbit ∂V+\{0}.

If U is non-trivial, then U is associated with a unitary, irreducible representation of the
little group of q, by inducing representations as in Sect. 3.

The little group of q, namely the stabiliser subgroup of L̃↑
+ for the action of L↑

+ on
R
s+1, is isomorphic to Ẽ(s − 1), the double cover of the Euclidean group E(s − 1) on

R
s−1, s > 2, i.e., E(s − 1) is the semi-direct product R

s−1
� SO(s − 1). If s = 2, the

little group is the abelian group R. We now assume s > 2, afterwords we shall indicate
the modifications in the s = 2 case.

Every unitary representation V of Ẽ(s − 1) = R
s−1

� S̃O(s − 1) is now induced
by a unitary representation of the stabiliser of a point in R

s−1 (for the adjoint action
of Ẽ(s − 1)). Points in the same orbit give equivalent representations. The orbits in
R
s−1 under the natural SO(s − 1) action are spheres of radius κ ≥ 0. Such radii define

inequivalent classes of unitary representations. As in the 3 + 1-dimensional case, there
are two cases:

• the restriction V |Rs−1 is trivial (κ = 0);
• the restriction V |Rs−1 is non-trivial (κ > 0).

IfU is associated, by induction, with a representation V of the little group Ẽ(s−1)with
κ = 0 we say thatU has finite helicity, in the case κ > 0 we say thatU has infinite spin.

With V an irreducible representation of Ẽ(s − 1) of radius κ > 0 as above, s > 2,
the joint spectrum of the Ẽ(s − 1)-translation generators is the sphere in R

s−1 of radius
κ . Therefore

spec (iV (X)) = [−κ, κ] (17)

where X is any generator of the E(s − 1)-translations and V (X) the corresponding
translation generator in the representation V .
We show now that infinite spin representations are not dilation covariant:

Proposition 8.1. Let U be an irreducible, positive energy, unitary representation of
P̃↑
+ (s), s ≥ 2. Then U is dilation covariant iff U is massless with finite spin.

Proof. We have seen in Proposition 4.3 in the case s = 3 that

βt (X) = e−t X (18)
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where βt , the automorphisms of P↑
+ defined in (12), here acting on the Lie algebra of

P↑
+ , and X is a translation generator on the Lie algebra lie(E(2)).
Now assume s ≥ 3. The inclusion P↑

+ (3) ⊂ P↑
+ (s) restricts to an inclusion E(2) ⊂

E(s−1) hence we have inclusions of Lie algebras lie(E(2)) ⊂ lie(E(s−1)) ⊂ lie(P↑
+ ).

We consider the automorphisms βt of P̃↑
+ (s) analogously defined w.r.t. the zero and

s coordinates (the natural extension of βt from P̃↑
+ (3) to P̃↑

+ (s), we keep the same
notation).

Let now U be an irreducible, positive energy, massless, unitary representation U of
P̃↑
+ (s) with infinite spin κ > 0. Then U is associated as above by induction with an

irreducible representation V of the little group Ẽ(s − 1) of radius κ . As in Proposition
4.3 we have to show that V · βt |Ẽ(s−1) is a representation of radius e−tκ .

Indeed, due to the relation (18), with X ∈ lie(E(2)) ⊂ lie(E(s − 1)) we have

spec (iV (X)) = [−e−tκ, e−tκ] (19)

so U is not dilation covariant by the above comment.
An analogous discussion shows that finite helicity representations are dilation covari-

ant.
The case s = 2 is discussed here below. ��
Case s = 2. In 2 + 1 spacetime dimensions, the Lorentz group L+(2) is isomorphic

to SL(2, R)/{1,−1}. The little group of the point q = (1, 0, 1) is R, which is simply
connected, and lifts uniquely to a one-parameter subgroup of the universal (infinite sheet)
cover L̃+(2). The pre-image of the little group in L̃+(2) is thus isomorphic to R × Z,
with Z the centre of L̃+(2).

The irreducible representations of the little group R × Z are thus one-dimensional,
given by a pair (κ, z) where κ belongs to R (the dual of R) and z ∈ T (the dual of Z).

Denote byUκ,z the representation of P̃↑
+ (2) associated with the representation (κ, z)

of the little group. In analogy with the higher-dimensional case, we say that a unitary
representation Uκ,z of P̃↑

+ (2) has “infinite spin” if κ �= 0. Yet, in this case, the name
“infinite spin” does not refer to any infinite-dimensional representation.

Again, Eq. (18) holds, thus the representation (κ, z) composed with the restriction of
βt to the little group is equal to (e−tκ, z). It follows that Uκ,z is dilation covariant iff
κ = 0.
We also notice that the conjugate representation of (κ, z) is (−κ, z̄), thus Uκ,z extends
to a (anti-)unitary representation of P+(2), iff κ = 0 and z = ±1. The other irreducible
massless representations of P+(2) are given by Uκ,z ⊕U−κ,z̄ , with κ �= 0 or z �= ±1.

8.2. Twisted timelike locality. The second step consists of showing an analogous of
Proposition 5.4 in any spacetime dimension s ≥ 2.

We start with a unitary massless representation U acting covariantly on a net on
wedgesW � W �−→ H(W ) ⊂ H s.t. assumptions 1–5 hold. Furthermore, suppose that
for some double cone, the subspace H(O), defined as in (13), is not trivial. In this setting
the proof of Proposition 5.2 straightforwardly extends to every spacetime dimension.

Case s odd When the space dimension s is odd, the Huygens principle holds and the
proof of Proposition 5.4 easily extends in this case.
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Case s even, s ≥ 2 In this case, timelike commutativity does not hold. Our results hold
true, but Lemma 5.3, necessary to show that H(V+) is separating, needs a variation.

As is well known, the Huygens principle is not satisfied in odd space dimensions,
due to reverberations, yet we show here a version of this principle that holds if s is even.

Let f be a tempered distribution on R
s+1; we define h( f ) by its Fourier transform

ĥ( f )(p) = −i sign(p0) f̂ (p),

provided this expression is well defined. h is the Hilbert transform with respect to the
time variable, thus

h( f )(x) = 1

π

∫ ∞

−∞
f (t, x1, . . . xs)

x0 − t
dt

(integral in the principal value sense for a continuous function). Clearly, if f1 ∈
S(Rs+1), f2 ∈ S′(Rs+1), the convolution product satisfies

h( f1 ∗ f2) = h( f1) ∗ f2 = f1 ∗ h( f2)

If f is a function which is the boundary value of an analytic function on the tube
R
s+1 − iV +, f = � f + i� f , then h(� f ) = � f ; we assume here that f̂ (0) is defined

and equal to zero (to rule out the non-zero constants), namely f has zero mean.
We are interested in the case f is a solution of the wave equation � f = 0, then

also �h( f ) = 0. Let �+ be the massless, scalar two-point function, namely the Fourier
anti-transform of the Lorentz invariant measure on ∂V+\{0}. We have (up to a real
proportionality constant), see e.g. [15],

�+(x) = 1/|x |s−1 if x2 ≡ x20 − x21 − · · · x2s �= 0,

where |x | = √−x2 (with opposite square root determination in V±) and

�+(x) real, �+(x) = �+(−x) , x spacelike (x2 < 0)

�+(x) imaginary, �+(x) = −�+(−x) , x timelike (x2 > 0).

The commutator function

�0(x) = �+(x) − �+(−x)

vanishes for x spacelike, while the function

�′
0(x) = −i

(
�+(x) + �+(−x)

)

vanishes for x timelike. Notice that we have

�′
0 = h(�0).

Proposition 8.2. Let f be a bounded continuous function on R
s+1 with � f = 0, and O

a double cone. If f (x) = 0 for x in the spacelike complement of O , then h( f )(x) = 0
for x in the timelike complement of O.
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Proof. Let h be a smooth function with supp(h) ⊂ O . Then f ≡ h ∗ �0 satisfies
� f = 0 and f (x) = 0 if x ∈ O ′. Moreover

h( f ) = h(h ∗ �0) = h ∗ h(�0) = h ∗ �′
0

vanishes on the timelike complement of O .
Now any smooth function f with � f = 0 and supp( f ) ⊂ O can be written f =

h ∗ �0 as above, hence the proposition holds true for every smooth solution of the wave
equation f . For a general continuous f , one can approximate as usual f by f ∗ jε by a
smooth approximate identity jε, and get the thesis because h( f ∗ jε) = h( f ) ∗ jε. ��

We are now ready to prove the version of Lemma 5.3 in odd spacetime dimensions.

Lemma 8.3. Let U be a massless, unitary representation of the double cover of the
Poincaré groupP↑

+ (s), s even, s ≥ 2, on a Hilbert spaceH. Assume that H is a twisted-
local,U-covariant net of standard subspaces ofH on wedges. Let O1, O2 ∈ O with O2
in the timelike complement of O1, then

H(O2) ⊂ i Z H(O1)
′. (20)

Proof. With Or and f (x) = 〈ξ,U (x)Zη〉, ξ, η ∈ H(Or ) as in the proof of Lemma 5.3,
we have �� f = 0 and � f (x) = 0 if x ∈ O ′

2r .
Thus, by Proposition 8.2, h(�( f )) = −�( f ) vanishes in the timelike complement

of O2r ; but

�( f )(x) = �(i f )(x) = �i〈ξ, ZU (x)η〉 = �〈ξ, ZU (x)iη〉
and we get the thesis. ��

We may now extend Proposition 5.4 in any spacetime dimension. Note that, in the
following Proposition8.4, the cyclicity assumption for H(O) follows from H(O) �= {0}
by Proposition5.2.

Proposition 8.4. Let U be a massless representation of P̃↑
+ , acting covariantly on a

net H of standard subspaces of H, satisfying 1–5, on wedges on the s + 1-dimensional
Minkowski spacetime, with s ≥ 2.

If H(O) is cyclic for some double cone O , then U is dilation covariant.
Moreover the dilation one-parameter unitary group D can be chosen canonically,

and D(t) ∈ U (P̃↑
+ )′′, t ∈ R.

Proof. H(V+), the closed linear span of all spaces H(O) with O ⊂ V+, is a standard
subspace of H by Lemma 8.3, so, by positivity of the energy and Theorem 2.4, the

rescaled modular unitary group D(t) ≡ �
−i t

2π
H(V+)

implements dilations onU -translations,
and commutes with the Lorentz unitaries by Lemma 2.3. Namely D implements the
dilations on U .

Now, by Proposition 5.1, U extends to an (anti)-unitary representation Û of P̃+ on
H, Û maps the reflection around the edge of W to JH(W ), and H(W ) = HÛ (W ), the

standard subspace associated by Û with W .
Our choice of D is canonical as it is given by modular unitaries. To show that D(t) ∈

U (P̃↑
+ )′′, notice that this trivially holds ifU is irreducible. Recall now that finite helicity
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representations are dilation covariant. Assume first that Û is an irreducible, finite non-
zero helicity h representation of P̃+, then Û restricts to U = Uh ⊕ U−h on P̃↑

+ , where
Uh is the helicity h irreducible representation of P̃↑

+ . There is a unitary implementation
of dilations T (s) which decomposes according to U . As T (s)D(−s) ∈ U (P̃↑

+ )′ and Uh

andU−h are disjoint, also D(s) decomposes according toU , and D(t) ∈ U (P̃↑
+ )′′ holds.

In the general case withU reducible,U extends as above to a representation Û of P̃+,

and so the net HÛ disintegrates according to Û . In particular, H(V+) and its modular

unitaries disintegrate according to Û and we have D(t) ∈ U (P̃↑
+ )′′ as stated. ��

We note that, by Lemma 2.2, if s is even we have

H(V+) = i Z H(V−)′.

In particular, if H is local, we have twisted timelike duality H(V+) = i H(V−)′, and if
H is purely Femi-local (Z = −i) we have timelike duality H(V+) = H(V−)′.

8.3. General result. We indicate in this section the modifications that are necessary to
extend our results in any spacetime dimension s + 1 ≥ 3.

LetU be a unitary, positive energy representation of P̃↑
+ (s) on a Hilbert spaceH. We

assume here that a 2π -rotation in space gives a selfadjoint operator � ≡ U (2π), i.e.,
the eigenvalues of � are ±1. In other words U is a representation of the double cover
of P↑

+ (s) which coincides with the universal cover P̃↑
+ (s) if s > 2; and � is the image

under U of the non-trivial element in the centre of the double cover.
A U -covariant (twisted-local) net of standard subspaces H is defined as a map

W � W �−→ H(W ) ⊂ H

as in Sect. 5.
Note that the proof Proposition 5.2 does not use the twisted locality property, and is

valid also here. We have:

Theorem 8.5. Let U be a unitary, positive energy representation of the cover of the
Poincaré group P̃↑

+ (s), acting covariantly on a net H of standard subspaces of H on
wedges satisfying 1–5 as above, s ≥ 2.

(a) If H(O) is cyclic for some double cone O , then U does not contain an infinite spin
sub-representation (namely there is no infinite spin fibre in the irreducible direct
integral decomposition).

(b) IfU is irreducible and H(O) �= {0} for some double cone O , thenU is not massless
with infinite spin.

(c) If U extends to an (anti-)unitary, irreducible representation Û of P̃+ on H and
H(O) �= {0} for some double cone O , then U does not contain an infinite spin
sub-representation.

Proof. (b) follows from (a) by Proposition5.2, so we prove the statement (a).
By restricting to the massless component, we may assume that U is massless. By

Proposition 8.4, U is dilation covariant; U = ∫ ⊕
X Uλdμ(λ) is the irreducible direct

integral decomposition ofU , by Proposition8.4 the dilation unitary group D decomposes
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accordingly, D = ∫ ⊕
X Dλdμ(λ), soUλ is dilation covariant for μ-almost all λ. ThusUλ

has not infinite spin by Proposition 8.1.
(c) EitherU is irreducible, and we apply (b), orU is the direct sum of two irreducible,

inequivalent representations of P̃↑
+ , U = U1 ⊕U2 onH1 ⊕H2. In this case, letK ⊂ H

be the complex Hilbert subspaces generated by H . ThenK isU -invariant. IfK = H we
apply (a). Otherwise U |K = U1 (or U |K = U2). Then H(O) is cyclic on K for some
double cone as in Proposition5.2, soU1 extends to an (anti-)unitary representation of P̃+

onH1 [11]; thus Û is easily seen to be reducible, contrary to our assumption. Therefore
K = H, and the conclusion follows from (a). ��

9. Quantum Field Theory: Nets of von Neumann Algebras

In this section the Minkowski spacetime dimension is s ≥ 2.
Given a positive energy (anti-)unitary representation of the proper Poincaré groupP+

on a Hilbert space H, the paper [4] provides a canonical construction of a U -covariant
local net of standard subspaces of H on wedges with the properties 1–5. Similarly,
this construction gives a twisted-local canonical U covariant net if one considers a
representation U of the the universal cover P̃+. The above Theorems 6.1, 8.5 apply to
this net, hence to the net of von Neumann algebras obtained via second quantisation on
the Bose/Fermi Fock space, depending on U (2π) = ±1.
A twisted-local,U -covariant net of von Neumann algebras on wedgesF is an isotonous
map

W �−→ F(W )

that associates a von Neumann algebra F(W ) on a fixed Hilbert space H with every
W ∈ W , with the following properties:

• Poincaré covariance: U (g)F(W )U (g)∗ = F(gW ), g ∈ P̃↑
+ ;• Vacuum with Reeh–Schlieder property: there exists a unique (up to a phase) U -

invariant vector � ∈ H and F(W ) is cyclic on � for all W ∈ W;
• Bisognano–Wichmann property:

�i t
W = U

(
�W (−2π t)

)
, W ∈ W,

where �W is the modular operator of (F(W ),�);
• Twisted locality: For every wedge W ∈ W we have

ZF(W ′)Z∗ ⊂ F(W )′

where Z is unitary and Z = 1+i�
1+i , � = U (2π) as above.

Due to twisted locality, � is indeed also separating for each F(W ), so the modular
operators �W are defined.
Given F as above, we define the von Neumann algebra associated with the region O as

F(O) ≡
⋂

W�W⊃O

F(W ). (21)

A twisted-local, U covariant net O �−→ F(O) on double cones is analogously defined,
by requiring the U -covariance and the cyclicity of the algebras F(O). Then F(W ) is
defined by additivity and W �−→ F(W ) is a twisted-local, U -covariant net on wedges.



Where Infinite Spin Particles are Localizable 609

The von Neumann algebrasF(O) defined by (21) are, in general, larger than the original
F(O) (they define the dual net).

The free Bose (resp. Fermi) field net F± is defined by second quantization on the
symmetric/anti-symmetric Fock space F±(H) as

F±(W ) ≡ R±
(
H(W )

)
, W ∈ W,

where H = HU is the canonical net of standard subspaces of the one-particle Hilbert
space H associated with the unitary representation U of the cover of Poincaré group
with U (2π) = ±1, and R±(H(W )) are defined as follows.

WithH aHilbert space and H ⊂ H a real linear subspace, R±(H) is the vonNeumann
algebra on F±(H) generated by the CCR/CAR operators:

R+(H) ≡ {w(ξ) : ξ ∈ H}′′, R−(H) ≡ {�(ξ) : ξ ∈ H}′′, (22)

with w(ξ) the Weyl unitaries on F+(H) and �(ξ) the Fermi field operators on F−(H).
Note that, by continuity,

R±(H) = R±(H̄).

Moreover the vacuum vector � is cyclic (resp. separating) for R±(H) iff H̄ is cyclic
(resp. separating).

If H is standard, we denote by S±
H , J±

H , �±
H the Tomita operators associated with

(R±(H),�), and by �±(T ) the Bose/Fermi second quantization of a one-particle oper-
ator T on H, defined by tensor products on F±(H).

This assignment (22) respects the lattice structure, as originally proven in [1] (Bose
case) and [10] (Fermi case). The modular operators were computed in [9,10,21]. For
convenience, we state these properties in the following proposition with a sketch of
proof.

Proposition 9.1. Let H and Ha be closed, real linear subspaces of H. We have

(a+) S+H = �+(SH ), J+H = �+(JH ), �+
H = �+(�H ),

(a−) S
−
H = Z�−(i SH ), J−

H = Z�−(i JH ), �−
H = �−(�H ),

(b) R+(H)′ = R+(H ′) and R−(H)′ = Z R−(i H ′)Z∗,
(c) R±(

∑
a Ha) = ∨

a R±(Ha),
(d) R±(∩aHa) = ⋂

a R±(Ha),

where
∨

denotes the von Neumann algebra generated, Z = 1 (resp. Z = −i ) on the
n-particle subspace, n even (resp. odd), and H is standard in (a±).

Proof. (a±) S+H = �+(SH ) due to the relation S+Hw(ξ)� = w(−ξ)� (see [21]), while
S−
H = Z�−(i SH ) due to the relation S−

H�(ξ1)�(ξ2) . . . �(ξn)� = �(ξn) . . . �(ξ2)�

(ξ1)�, ξ ∈ H , with� the Fock vacuum vector (see [10]). By the uniqueness of the polar
decomposition, we then have J+H = �+(JH ), J−

H = Z�−(i JH ) and �±
H = �±(�H ).

(b) Assume first that H is standard. By (a) we have

R+(H)′ = J+H R+(H)J+H = R+(JH H) = R+(H
′),

R−(H)′ = J−
H R−(H)J−

H = Z R−(i JH H)Z∗ = Z R−(i H ′)Z∗.

Now (b) trivially holds for H = H or H = {0} too. To prove (b) for a general closed real
linear subspace H ofH, we may decomposeH in the direct sumH = H−1 ⊕H0 ⊕H1,
where H1 ≡ H⊥ and H−1 ≡ H ∩ i H . Then H decomposes as H = H−1 ⊕ H0 ⊕ H1
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with H−1 = H−1, H1 = {0} and H0 a standard subspace of H0, and the statement
follows at once.

(c) is an immediate consequence of the Weyl relations w(ξ +η) = e−�〈ξ,η〉w(ξ)w(η)

(Bose case), the real linearity of � (Fermi case), and (a).
(d) now follows easily from (b) and (c). ��

We state now the following consequence of Theorems 6.1, 8.5 for free fields.

Corollary 9.2. Let F± be the free Bose/Fermi field net of von Neumann algebras on
wedges associated with a positive energy, infinite spin, irreducible unitary Bose/Fermi
representation of P̃↑

+ [4].
ThenF(C) is cyclic on the vacuum vector if C is a spacelike cone, butF(O) = C ·1

if O is any bounded spacetime region.

Proof. Immediate by Theorem 6.1, the results in [4], and the fact (Theorem 9.1) that the
intersection of closed real linear spaces of the one-particle Hilbert space corresponds to
the intersection of the associated von Neumann algebras on the Fock space:

⋂

W⊃X

F±(W ) ≡
⋂

W⊃X

R±
(
H(W )

) = R±
( ⋂

W⊃X

H(W )
)

for X = C a cone, resp. X = O a double cone. ��
The following theorem shows why infinite spin representations do not occur in a

theory of local observables.
We shall say that a unitary representation U of P̃↑

+ has infinite spin if U is a direct
integral of irreducible, infinite spin representations. ThusU does not not contain an infi-
nite spin sub-representation iff no infinite spin representation appears in the irreducible
direct integral decomposition of U (up to a measure zero set).

Theorem 9.3. Let F be a twisted-local net of von Neumann algebras F(O) on double
cones on a Hilbert space H, covariant w.r.t. a unitary representation U of P̃↑

+ with
vacuum vector � ∈ H. As above, we assume the double cone Reeh–Schlieder property
and the Bisognano–Wichmann property.

Then U does not contain an infinite spin sub-representation.

Proof. For every wedge W ∈ W we set

H(W ) = F(W )s.a.�,

where F(W )s.a. is the selfadjoint part of F(W ). By assumptions, H : W �−→ H(W ) is
then a twisted-local, U -covariant net of standard subspaces of H satisfying Properties
1–5.

With O a double cone, we have that

H(O) ≡
⋂

W�W⊃O

H(W ) ⊃ F(O)s.a.�

is cyclic.
We thus infer from Theorem 8.5 (a) that U does not contain an infinite spin sub-

representation. ��
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We now start with a local netA of von Neumann algebras on double cones, with the
double cone Reeh–Schlieder property and the Bisognano–Wichmann property. Let

A ≡
⋃

O∈O
A(O)

(norm closure) be the quasi-observable C∗-algebra. We shall say that a representation
π of A is cone localizable if, for every spacelike cone C, π |A(C ′) is unitarily equivalent
to id|A(C ′), where A(C) is the C∗-algebra generated by A(O) as O runs in the double
cones contained in C . Similarly π is double cone localizable if π |A(O ′) � id|A(O ′), for
all double cones O .

A Doplicher–Haag–Roberts (DHR) (resp. a Buchholz–Fredenhagen) representation
[5,7] is a Poincaré covariant representation with positive energy, which is double cone
(resp. cone) localizable (Poincaré covariance with positive energy follows by general
assumptions [11]).

Theorem 9.4. Let π be a DHR representation of A with finite statistics [7]. Then the
unitary representation Uπ of P̃↑

+ in the representation π does not contain infinite spin
sub-representations.

Proof. By considering the dual net, we can assume Haag duality for double cones. We
consider the Doplicher–Roberts twisted-local field net F . We have A(O) ⊂ F(O) and
the restriction of the vacuum representation ofF toA is the direct sum (withmultiplicity)
of all DHR representations of A with finite statistics.

The representation UF of P̃↑
+ restricts accordingly to the representations ofA. Thus

we have to show that UF does not contain an infinite spin sub-representation. This will
follow from Theorem 9.3 once we show the Bisognano–Wichmann property. Now the
Bisognano–Wichmann property for F is a consequence of the Bisognano–Wichmann
property for A as one can identify the Connes–Radon–Nikodym cocycles, see [16,23].

��
As a consequence, let π be a Poincaré covariant representation of A. If π contains

infinite spin particles (i.e., Uπ contains an infinite spin sub-representation) then:

π is localizable in a double cone �⇒ π has infinite statistics.

This indicates an intimate relation among infinite spin, infinite statistics and localization
in infinitely extended regions.

10. Final Comments

10.1. Field algebra structure. Wenow describe the field algebra structure that we obtain
starting from the observable algebra and adding all chargeswith finite statistics, including
the ones with infinite spin (space dimension s > 2).

LetA be as a above a local net with the double cone Reeh–Schlieder property and the
Bisognano–Wichmann property. Let T be the family of all irreducible representations,
up to unitary equivalence (sectors), of A of Buchholz–Fredenhagen type with finite
statistics.

TheDoplicher–Roberts construction [8] yields a field netF of vonNeumann algebras
on a larger Hilbert space with F(C) ⊃ A(C) for every cone C , and the identity repre-
sentation ofA on the Hilbert space of F decomposes into the direct sum of elements of
T , with multiplicity.
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By the spin-statistics theorem [12], F is a twisted-local net. If infinite spin sectors
exist, then byTheorem9.3F(O) cannot be cyclic on the vacuumvector if O is a bounded
region. If one restricts F to the cyclic Hilbert space generated by F(O), one gets the
field algebra associated with DHR charges. We discuss a physical interpretation of this
structure in the outlook.

Wemention also that, in two space dimensions, cone localizable representations may
have braid group statistics. If we consider only those ones with Bose or Fermi statistics,
then the above field algebra description still holds (the spin-statistics theorem in 2 + 1
dimensions is treated in [22]). However, with general statistics, no field algebra exists
that describes an analogue of the above picture.

10.2. de Sitter spacetime. If A is a local net on spacelike cones of the Minkowski
spacetime R

s+1, one can associate a local net B on double cones of the s-dimensional de
Sitter spacetime dSs (and similarly in the twisted-local case). As usual, one views dSs
as an hyperboloid of R

s+1, which is the manifold of spacelike directions of Minkowski
spacetime. With E any region of dSs , one sets B(E) ≡ A(CE ), where CE ⊂ R

s+1 is
the spacelike cone with apex in the origin spanned by E .

This construction has been made in [4]. In particular, in the free field case (finite or
infinite spin), one gets the canonical modular construction on dSs associated with the
restriction of Poincaré unitary representation to the Lorentz subgroup.

We emphasize here that the de Sitter picture is natural in the presence of infinite spin
particles. These particles have no bounded spacetime localization on the Minkowski
spacetime, yet they are localized in bounded spacetime regions of the de Sitter spacetime.

10.3. The role of the Bisognano–Wichmann property. In this paper, we rely on the
Bisognano–Wichmann property as a first principle (cf. [11,12]), so we briefly comment
here on its roots.

The Bisognano–Wichmann property implies the positivity of the energy (see [4]),
and is slightly stronger than that; it reflects the stability of the vacuum state. It always
holds in aWightman theory [2], including string localized fields [27]. In the local algebra
framework one can find a counter-example (see Sect. 7), which has however a patho-
logical nature (with continuous degeneracy) and is built on the non-uniqueness of the
covariance unitary representation of the Poincaré group: if one chooses the wrong (non-
canonical) representation, one obviously violates the Bisognano–Wichmann property.
So we may expect the latter to always hold when the Poincaré representation is unique,
say by assuming the split property.

In amassive theory, the Bisognano–Wichmann property can be derived by asymptotic
completeness [26]. It always holds in the conformal case. It is equivalent to a sub-
exponential growth estimate on the energy density levels of localized states for the
Rindler Hamiltonian, namely (ξ, e−2πK ξ) < ∞ for all vector states ξ localized in a
given coneC contained in a wedgeW , with K the generator of the unitary one-parameter
group of boosts associated with W [13].

A further argument for the Bisognano–Wichmann property is its mentioned equiv-
alence with the Hawking-Unruh effect for Rindler black holes [31] (the Hawking tem-
perature is the KMS temperature). An illustration of this fact goes beyond the purpose
of this paper and we refer to the book [14] for more insight on this point and related
aspects.
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11. Outlook

Infinite spin particle states cannot be localized in a bounded spacetime region. This
corresponds to the fact that no local observables exist that can generate these states
from the vacuum. These results, obtained in the present paper in the Operator Algebraic
intrinsic setup [4], extend the no-go theorem on local fields with infinite spin obtained
previously in the Wightman setting [36]. The string-localized free fields constructed in
[27], which correspond to and generate the von Neumann algebras in [4], cannot thus
be compactly localized.

As described in Sect. 10.1 our results provide the following picture in a theory of
local observables.

A quantumfield theory on aHilbert space including infinite spin states is described by
a netW �−→ F(W ) of von Neumann algebras for wedge regions, and the vacuum vector
is cyclic for the von Neumann algebras for spacelike cones (defined by intersections of
wedge algebras), and has the Bisognano–Wichmann property. The algebras for double
cone regions are non-trivial, forming a covariant subnet O �−→ A(O), but the vacuum is
not cyclic forA(O). The full Hilbert space therefore splits into representations ofA, with
the infinite spin states absent from the vacuum representation. The representations con-
taining the infinite spin states are massless sectors of the Buchholz–Fredenhagen type,
i.e., localized in spacelike cones, and the netF serves as a field algebra for these sectors.
This picture complies with the scenario proposed by Schroer [30] with a hindsight on
“dark matter”.

One may reasonably expect that A contains local generators of Poincaré transfor-
mations, i.e., a stress-energy tensor subnet (which could couple to gravity). As infinite
spin states are localized in spacelike cones, their Lorentz transforms will be localized
in different cones. Thus, the obstruction against infinite spin states to be present in the
vacuum representation is necessary because they cannot be Lorentz transformed by local
generators. But the representatives of local generators in a cone-localized representation
may well Lorentz transform infinite spin states present in these sectors.

By our result (Corollary9.2), if F is the free field net associated with an infinite spin
representation, then the subnetAwould be trivial. Hence, the above scenario necessarily
requires a self-interaction of some unknown sort. It is an exciting challenge to describe
such an interaction, and the possible interaction of infinite spin fields with “ordinary
matter” fields.
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