We characterize the classical complex reflection groups for which a recent symmetric group equidistribution result studied by Diaconis, Evans, and Graham holds. This leads to some refinements of the original result, which seem to be new even in the symmetric group case.

Brenti, F., Marietti, M. (2018). Fixed points and adjacent ascents for classical complex reflection groups. ADVANCES IN APPLIED MATHEMATICS, 101, 168-183 [10.1016/j.aam.2018.08.001].

Fixed points and adjacent ascents for classical complex reflection groups

Francesco Brenti;
2018-01-01

Abstract

We characterize the classical complex reflection groups for which a recent symmetric group equidistribution result studied by Diaconis, Evans, and Graham holds. This leads to some refinements of the original result, which seem to be new even in the symmetric group case.
2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
Complex reflection group; enumeration; equidistribution
https://www.sciencedirect.com/science/article/abs/pii/S0196885818300915?via=ihub
https://www.mat.uniroma2.it/~brenti/56.pdf
Brenti, F., Marietti, M. (2018). Fixed points and adjacent ascents for classical complex reflection groups. ADVANCES IN APPLIED MATHEMATICS, 101, 168-183 [10.1016/j.aam.2018.08.001].
Brenti, F; Marietti, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Jart56.pdf

accesso aperto

Descrizione: Articolo principale
Licenza: Non specificato
Dimensione 259.83 kB
Formato Adobe PDF
259.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/225783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact