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Abstract

We characterize the classical complex reflection groups for which a recent

symmetric group equidistribution result studied by Diaconis, Evans, and Gra-

ham holds. This leads to some refinements of the original result, which seem

to be new even in the symmetric group case.

1 Introduction

In a recent paper [5] Diaconis, Evans, and Graham give various proofs of the fact

that the number of permutations in Sn with a given set I of fixed points distinct

from n is equal to the number of permutations in Sn having I as a set of unseparated

pairs, for all I ⊆ [n− 1] (see §2 Theorem 2.2 for the relevant definitions).

This result is equivalent to the fact that the two sets of permutations A = {σ ∈
Sn : {k ∈ [n − 1] : σ(k + 1) = σ(k) + 1} ⊇ I} and B = {σ ∈ Sn : {k ∈ [n − 1] :
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σ(k) = k} ⊇ I} have the same cardinality for all I ⊆ [n− 1]. In this paper, we first

show that these two sets are just the two “extreme cases”of a large class of subsets

of Sn, all having the same cardinality: these subsets of permutations are indexed

by a pair (J,K) of subsets of [n − 1] and have cardinalities that depend only on

|J |+ |K|. The two subsets A and B are obtained as special cases with the indexing

pairs (∅, I) and (I, ∅). We believe that this result sheds some new light on Theorem

2.2. We then investigate the extent to which Theorem 2.2 continues to hold for

the classical complex reflection groups, which are the colored permutation groups

G(r, p, n), where r, p, n ∈ P and p | r (see §2 for the definition). More precisely, we

show that, with suitable definition of “unseparated pair ”(which we prefer to call

“adjacent ascent”), the result holds for the group G(r, p, n) if and only if gcd(p, n) =

1 (Corollary 4.2). Our investigation naturally leads to a refinement of the result in

[5] (Corollary 4.8), which, in turn, holds for G(r, p, n) if and only if all divisors of p

are larger than n (Corollary 4.3). We also investigate some other possible definitions

of adjacent ascent for colored permutations and the corresponding equidistribution

results. Our proofs are enumerative and combinatorial.

The organization of the paper is as follows. In the next section, we recall some

definitions, notation, and results that are used in what follows. In §3, we introduce

the concept of compatible subsets and obtain a result that includes the one in

[5] as the two “extreme cases”. In §4, we propose a definition of adjacent ascent

for any colored permutation and characterize the groups G(r, p, n) for which the

result in [5] holds. This naturally leads to a refinement of the original theorem,

and we characterize the groups G(r, p, n) for which this refinement holds. This

refinement seems to be new even in the symmetric group case. In §5, we investigate

two other possible definitions of “adjacent ascent”for colored permutations and the

corresponding equidistribution results. In §6, we provide bijective proofs of two of

the results in the previous sections.

2 Preliminaries

In this section we recall some notation, definitions, and results that are used in what

follows.

We let Z, P, and N be the set of integers, positive integers, and nonnegative

integers, respectively. Given n,m ∈ N, with n ≤ m, we let [n,m] := {n, n+1, . . . ,m}
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and, for n ∈ P, we let [n] := [1, n]. For a set T , we let S(T ) be the set of all bijections

of T , and Sn := S([n]).

Let n ∈ P. By a composition of n we mean a sequence α = (α1, . . . , αs) (for

some s ∈ P) of positive integers such that
∑s

i=1 αi = n. We let Cn be the set of all

compositions of n, and C :=
⋃
n≥1 Cn. Given β, α ∈ Cn, with β = (β1, . . . , βs) and

α = (α1, . . . , αt), we say that β refines α if there exist 1 ≤ i1 < i2 < · · · < it−1 < s

such that
∑ik

j=ik−1+1 βj = αk for k = 1, . . . , t (where i0 := 0, it := s). We then

write β � α. Moreover, for β = (β1, . . . , βs) ∈ Cn, we let π(β) be the non-increasing

rearrangement of β1, . . . , βs. For any other undefined notation and terminology in

enumerative combinatorics, we follow [10] and [11].

Let r, n ∈ P. We denote by G(r, n) the group of colored permutations of [n] with r

colors. So the underlying set is [0, r−1]n×Sn, and, for (r1, . . . , rn, σ), (s1, . . . , sn, τ) ∈
G(r, n), we have

(r1, . . . , rn, σ) (s1, . . . , sn, τ) = (rτ(1) + s1, . . . , rτ(n) + sn, στ)

where the sums are taken modulo r. Given p ∈ P, with p | r, we let

G(r, p, n) := {(r1, . . . , rn, σ) ∈ G(r, n) : p | (r1 + · · ·+ rn)}.

It is clear that G(r, p, n) is a subgroup of G(r, n) of index p.

Let ξ ∈ C be a primitive r-th root of unity. We identify G(r, n) with the group of

all n× n complex matrices with entries in {ξk : k ∈ [r]} ∪ {0} that have exactly one

nonzero entry in each row and column by identifying (r1, . . . , rn, σ) with the matrix

M ∈Mn(C) defined by

Mi,j :=

{
ξrj , if i = σ(j),

0, otherwise,

for all i, j ∈ [n]. We also identify G(r, n) with the group of all bijections f ∈
S([0, r − 1] × [n]) such that f(t, i) = (t, 0) + f(0, i) for all (t, i) ∈ [0, r − 1] × [n],

where the sum in the first component is taken modulo r, by identifying (r1, . . . , rn, σ)

with the function g : [0, r−1]× [n]→ [0, r−1]× [n] defined by g(t, i) := (t+ri, σ(i))

for all (t, i) ∈ [0, r− 1]× [n]. It is clear that any such bijection f ∈ S([0, r− 1]× [n])

is uniquely determined by its values on {0} × [n], and we write

f = [ac11 , . . . , a
cn
n ] (1)
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to mean that f(0, i) = (ci, ai), for all i ∈ [n]. Note that (r1, . . . , rn, σ) corresponds

to [σ(1)r1 , . . . , σ(n)rn ]. We call (1) the window notation of f . We sometimes find it

convenient to write ac for (c, a). Following [4] (see also [1], [2], and the references

cited there), we let

F (g) := {i ∈ [n] : (σ(i), ri) = (i, 0)}.

for g = (r1, . . . , rn, σ) ∈ G(r, n). We call the elements of F (g) the fixed points of

g. In what follows, we use the convention that σ(0) = 0, σ(n + 1) = n + 1, and

r0 = rn+1 = 0, for all (r1, . . . , rn, σ) ∈ G(r, n).

It is well known that the groups G(r, p, n) (and so, in particular, the groups

G(r, n) = G(r, 1, n)) are all complex reflection groups. They are usually referred to

as the classical complex reflection groups. Moreover, the groups G(1, 1, n), G(2, 1, n),

and G(2, 2, n) are isomorphic to the Coxeter groups of types An−1, Bn, and Dn,

respectively. When working with these Coxeter groups, we prefer to use their usual

presentations as groups of permutations (see e.g. [3, Chapter 8]). So we let Bn

be the group of all permutations σ of the set −[n] ∪ [n] such that σ(−i) = −σ(i),

for all i ∈ −[n] ∪ [n]. Because of this presentation, Bn is often called the “signed

permutation group”. Similarly, we let Dn be the subgroup of Bn consisting of the

signed permutations τ such that |{i ∈ [n] : τ(i) < 0}| ≡ 0 (mod 2), which is often

called the “even-signed permutation group”.

The following result is well known (see, for example, [13, Theorems 3.2.3 and

3.2.4]).

Proposition 2.1. Let a1, . . . , ah, b ∈ Z, and m ∈ P. There exist [x1]m, . . . , [xh]m ∈
Zm such that

[a1]m[x1]m + · · ·+ [ah]m[xh]m = [b]m (2)

if and only if gcd(a1, . . . , ah,m) | b.
In this case, the number of h-tuples ([x1]m, . . . , [xh]m) ∈ (Zm)h that are solutions of

(2) is equal to mh−1 · gcd(a1, . . . , ah,m).

The following result was proved in [5] (see Theorem 1.1 and the comments fol-

lowing it).

Theorem 2.2. Let n ∈ P. For all I ⊆ [n− 1],

|{σ ∈ Sn : {k ∈ [n− 1] : σ(k + 1) = σ(k) + 1} = I}|

4



= |{σ ∈ Sn : {k ∈ [n− 1] : σ(k) = k} = I}|.

Diaconis, Evans, and Graham call a pair (k, k + 1), with k ∈ [n− 1], an “unsep-

arated pair”of the permutation σ provided that σ(k + 1) = σ(k) + 1. The name,

and the motivation for studying this concept, comes from thinking of a permutation

as the result of shuffling a deck of n cards. Thus, an unseparated pair is a pair of

cards that are adjacent at the beginning of the shuffle and are still adjacent at the

end of it. This concept has also been studied in the literature under the name of

“succession”(see, e.g., [7, 8, 9, 12], and the references cited there).

Our aim in this paper is to investigate the extent to which Theorem 2.2 continues

to hold for the classical complex reflection groups G(r, p, n).

3 Compatible subsets

In [5], Diaconis, Evans, and Graham give three different proofs of Theorem 2.2. The

first proof that they give is enumerative and follows directly by the Principle of

Inclusion-Exclusion from the fact that, for all I ⊆ [n− 1], the sets {σ ∈ Sn : σ(i) =

i, ∀i ∈ I} and {σ ∈ Sn : σ(i+1) = σ(i)+1, ∀i ∈ I} have both cardinality (n−|I|)!.
In this section, we show that this is a special case of a more general phenomenon.

Definition 3.1. For any subset J ⊆ [n − 1], we let PJ be the interval partition of

[n] whose blocks are the intervals [t, j] such that [t, j − 1] ⊆ J and t− 1, j /∈ J .

Note that [t, j − 1] could be empty, and that each block of PJ contains exactly

one element not in J , so that PJ has n− |J | blocks.

Fix J ⊆ [n− 1]. Given I ⊆ [n] \ J , we say that a block B ∈ PJ is

• I-free, if B ∩ I = ∅;

• I-fixed, otherwise.

Note that, if the block B is fixed, then B ∩ I is the singleton consisting of the

greatest element of the interval B, since this element is the only one in B \J . Hence

the I-fixed and I-free blocks of PJ are, respectively, |I| and n− |J | − |I| in number.

Definition 3.2. We say that a subset I ⊆ [n] is J-compatible if I ∩J = ∅ and either

all I-free blocks of PJ have the same cardinality or their union is an interval.
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For example, let n = 12, J = {2, 5, 6, 9, 11}, and I = {1, 4, 7, 8}. Then

PJ = 1|2, 3|4|5, 6,7|8|9, 10|11, 12

has four I-fixed blocks (those containing an element in I, bolded) and three I-free

blocks. The subset I is J-compatible since the three I-free blocks have the same

cardinality. On the other hand, also I ′ = {1, 8, 10, 12} is J-compatible since the

partition

PJ = 1|2, 3|4|5, 6, 7|8|9,10|11,12

has three I ′-free blocks whose union forms the interval [2, 7].

We can now state and prove the main result of this section.

Theorem 3.3. Let J ⊆ [n− 1] and I ⊆ [n]. If I is J-compatible, then

|{σ ∈ Sn : σ(i) = i, ∀i ∈ I, and σ(j + 1) = σ(j) + 1, ∀j ∈ J}| = (n− |I| − |J |)!

Proof. For short, we set S = SI,J = {σ ∈ Sn : σ(i) = i, ∀i ∈ I, and σ(j+ 1) =

σ(j) + 1, ∀j ∈ J}.
Given τ ∈ Sn, we have τ ∈ S−1 if and only if τ(i) = i, for all i ∈ I, and j and

j+ 1 are adjacent in this order in the window notation of τ , for all j ∈ J . Therefore

τ ∈ S−1 if and only if τ(i) = i, for all i ∈ I, and t, t + 1, . . . , j are adjacent in this

order in the window notation of τ whenever [t, j] is a block of PJ . Hence τ ∈ S−1 is

equivalent to the following two conditions:

• t, t+ 1, . . . , j are adjacent in this order in the window notation of τ , for every

block [t, j] of PJ ,

• t, t + 1, . . . , j appear in positions t, t + 1, . . . , j, respectively, for every I-fixed

block [t, j] of PJ .

Since I is J-compatible, all permutations of the I-free blocks of PJ occur in

elements of S−1, so |S−1| = m!, where m is the number of I-free blocks of PJ , and

the result follows. 2

In other words, we have just shown that, under the hypotheses of Theorem 3.3,

the symmetric group Sm acts faithfully and transitively on SI,J−1 by permuting the

I-free blocks of PJ in the window notations (here m = n − |I| − |J | is the number

of I-free blocks).

6



Remark 3.4. For all I ⊆ [n−1], we have that I is ∅-compatible and ∅ is I-compatible.

Indeed,

• all blocks of P∅ have cardinality 1, and so, in particular, all I-free blocks of P∅

are equinumerous;

• all blocks of PI are ∅-free, and so their union is the interval [1, n].

Applying Theorem 3.3 in these two special cases, we obtain

|{σ ∈ Sn : σ(i) = i, ∀i ∈ I}| = (n− |I|)!

and

|{σ ∈ Sn : σ(i+ 1) = σ(i) + 1, ∀i ∈ I}| = (n− |I|)!

from which Theorem 2.2 follows.

4 Equidistribution results for the groups G(r, p, n)

In this section, we define the concept of adjacent ascent for any colored permutation

and investigate the extent to which the result of Diaconis, Evans, and Graham

continues to hold, with this definition, for the groups G(r, p, n). We show that the

result holds for G(r, p, n) if and only if gcd(p, n) = 1 and that a refinement of it

holds if and only if all divisors of p are larger than n. This last result seems to be

new even in the symmetric group case.

Given g = (s1, . . . , sn, σ) ∈ G(r, n), we let

AA(g) := {i ∈ [n] : (σ(i+ 1), si+1) = (σ(i) + 1, si)}.

We call the elements of AA(g) the adjacent ascents of g.

Given I, J ⊆ [n], we let

GI,J(r, p, n) := {g ∈ G(r, p, n) : F (g) ⊇ I, AA(g) ⊇ J}.

Note that n ∈ F (g) if and only if n ∈ AA(g), for all g ∈ G(r, p, n) (recall our

convention that σ(n + 1) = n + 1 and sn+1 = 0, for all (s1, . . . , sn, σ) ∈ G(r, n)).

Hence GI,J∪{n}(r, p, n) = GI∪{n},J(r, p, n) = GI∪{n},J∪{n}(r, p, n).

Let I ⊆ [n] and J ⊆ [n− 1], with I ∩ J = ∅. Let B1, . . . , Bn−|I|−|J | be the I-free

blocks of PJ and A1, . . . , A|I| be the I-fixed blocks of PJ . Let λ(I, J) be the non-

increasing rearrangement of |B1|, . . . , |Bn−|I|−|J || and α(I, J) := (α1, . . . , αs) where
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αi is the size of the i-th (from the left, say) connected component of [n] \
(
∪|I|i=1Ai

)
.

Given a partition λ = (λ1, . . . , λk) we let, as customary, mi(λ) = |{j ∈ [k] : λj = i}|,
for all i ∈ P.

Theorem 4.1. Let p, r, n ∈ P, with p | r. If I ⊆ [n] and J ⊆ [n− 1], with I ∩J = ∅,
then |GI,J(r, p, n)| equals

gcd(λ1, . . . , λn−|I|−|J |, p) ·
rn−|I|−|J |

p
· |{β ∈ C : β � α(I, J), π(β) = λ}| ·

∏
i≥1

mi(λ)!

where λ := λ(I, J) = (λ1, . . . , λn−|I|−|J |).

Proof. For short, we set G := GI,J(r, p, n). Let (s1, . . . , sn, τ) ∈ G(r, p, n).

It follows from our definitions that (s1, . . . , sn, τ) ∈ G−1 if and only if τ(i) = i and

si = 0 for all i ∈ I, and j and j+1 have the same color and are adjacent in this order

in the window notation of (s1, . . . , sn, τ) for all j ∈ J . Therefore (s1, . . . , sn, τ) ∈ G−1

if and only if τ(i) = i and si = 0 for all i ∈ I, and t, t+1, . . . , j all have the same color

and are adjacent in this order in the window notation of (s1, . . . , sn, τ) whenever [t, j]

is a block of PJ . Hence (s1, . . . , sn, τ) ∈ G−1 if and only if

• t, t+ 1, . . . , j have the same color and are adjacent in this order in the window

notation of (s1, . . . , sn, τ), for every block [t, j] of PJ , and

• furthermore, this common color is 0, and t, t + 1, . . . , j appear in positions

t, t+ 1, . . . , j, respectively, if [t, j] is a fixed block.

Let u := (s1, . . . , sn, τ) ∈ G−1, and let β(u) := (β1, . . . , βm) wherem = n−|I|−|J |
and βi is the size of the i-th (from the left) free block of PJ as it appears in the window

notation of u. Then β(u) � α(I, J) and π(β(u)) = λ. Furthermore, given β ∈ C
such that β � α(I, J) and π(β) = λ, there are gcd(λ1, . . . , λm, p) · r

m

p
·
∏

i≥1mi(λ)!

elements u ∈ G−1 such that β(u) = β. Indeed, for each i ≥ 1, the mi(λ) free blocks

of PJ of size i can be permuted arbitrarily without changing β(u). Furthermore, if

si is the common color of the i-th (from the left) free block of PJ as above, then we

have

[s1]p[β1]p + · · ·+ [sm]p[βm]p = [0]p. (3)

By Proposition 2.1, the number of m-tuples ([s1]p, . . . , [sm]p) ∈ Zmp that satisfy (3)

is pm−1 gcd(β1, . . . , βm, p), and so the number of m-tuples (s1, . . . , sm) ∈ [0, r − 1]m

that satisfy (3) is ( r
p
)m pm−1 gcd(β1, . . . , βm, p). The result follows. 2
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As a consequence of Theorem 4.1, we obtain the characterization of the groups

G(r, p, n) for which the analogue of Theorem 2.2 holds.

Corollary 4.2. Let r, p, n ∈ P, with p | r. The following are equivalent:

• gcd(p, n) = 1,

• for all I ⊆ [n− 1],

|{g ∈ G(r, p, n) : F (g)∩[n−1] = I}| = |{g ∈ G(r, p, n) : AA(g)∩[n−1] = I}|.

In this case,

|{g ∈ G(r, p, n) : |F (g)∩[n−1]| = m}| = |{g ∈ G(r, p, n) : |AA(g)∩[n−1]| = m}|

=
(n− 1)!

p

n−1∑
k=m

(−1)k−mrn−k
n− k

m!(k −m)!

for all 0 ≤ m ≤ n− 1.

Proof. Suppose gcd(p, n) = 1. Let I ⊆ [n− 1]. Applying Theorem 4.1 to (I, ∅),
we obtain λ(I, ∅) = (1n−|I|), and so

|GI,∅(r, p, n)| = (n− |I|)! r
n−|I|

p

(indeed we do not use the hypothesis gcd(p, n) = 1 here). On the other hand,

applying Theorem 4.1 to (∅, I), we obtain α(∅, I) = (n), and so

|G∅,I(r, p, n)| = gcd(λ1, . . . , λn−|I|, p) ·
rn−|I|

p
|{β ∈ C : π(β) = λ}|

∏
i≥1

mi(λ)!

= (n− |I|)!r
n−|I|

p

since, as is well known, |{β ∈ C : π(β) = λ}| = (n−|I|)!∏
i≥1mi(λ)!

, and gcd(λ1, . . . , λn−|I|, p) =

1 because λ1+· · ·+λn−|I| = n and gcd(p, n) = 1. Applying the Principle of Inclusion-

Exclusion over all I ⊆ [n− 1] yields the claimed identity.

Conversely, suppose gcd(p, n) > 1. For example, if I = [n− 1] then

|{g ∈ G(r, p, n) : F (g) ∩ [n− 1] = [n− 1]}| = |{(0, . . . , 0, s, Id) ∈ G(r, p, n)}|

=
r

p
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while, if p′ := p
gcd(p,n)

, then

|{g ∈ G(r, p, n) : AA(g) ∩ [n− 1] = [n− 1]}| = |{(s, . . . , s, Id) ∈ G(r, n) : p |ns}|

= |{(s, . . . , s, Id) ∈ G(r, n) : p′ | s}|

=
r

p′
.

The last equality is a routine computation using the Principle of Inclusion-Exclusion

and the first part. 2

Corollary 4.2 makes it natural to try to characterize the groups G(r, p, n) for

which the more refined identity, without intersecting with [n− 1], holds.

Corollary 4.3. Let r, p, n ∈ P, with p | r. The following are equivalent:

• there is no q ∈ [n] \ {1} such that q | p,

• for all I ⊆ [n],

|{g ∈ G(r, p, n) : F (g) = I}| = |{g ∈ G(r, p, n) : AA(g) = I}|.

In this case,

|{g ∈ G(r, p, n) : |F (g)| = m}| = |{g ∈ G(r, p, n) : |AA(g)| = m}|

=
n!

p

n∑
k=m

(−1)k−m
rn−k

m!(k −m)!

for all 0 ≤ m ≤ n.

Proof. Suppose that there is no q ∈ [n] \ {1} such that q | p. If I ⊆ [n], then

λ(I, ∅) = (1n−|I|), and so Theorem 4.1 implies

|GI,∅(r, p, n)| = (n− |I|)! r
n−|I|

p
,

as in the previous corollary. On the other hand. If n /∈ I, then as in the proof of

Corollary 4.2 we obtain

|G∅,I(r, p, n)| = gcd(λ1, . . . , λn−|I|, p)(n− |I|)!
rn−|I|

p
= (n− |I|)! r

n−|I|

p

since if q ∈ P is such that q | p and q |λi for i = 1, . . . , n− |I| then q ≤ n so, by our

hypothesis, q = 1. If n ∈ I then α({n}, I \ {n}) = (α1) for some α1 ≤ n− 1 and so,

as above

|G{n},I\{n}(r, p, n)| = gcd(λ1, . . . , λn−|I|, p)(n− |I|)!
rn−|I|

p
= (n− |I|)! r

n−|I|

p
,
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by Theorem 4.1 and our hypothesis. Therefore

|{g ∈ G(r, p, n) : F (g) ⊇ I}| = |{g ∈ G(r, p, n) : AA(g) ⊇ I}|.

Applying the Principle of Inclusion-Exclusion to all I ⊆ [n] yields the claimed iden-

tity.

Conversely, suppose that there is q ∈ [n] \ {1} such that q | p. If I = [n] \ {q},
then

|{g ∈ G(r, p, n) : F (g) = I}| = |{(0, . . . , 0, s︸ ︷︷ ︸
q

, 0, . . . , 0, Id) ∈ G(r, n) : p | s, s 6= 0}|

=
r

p
− 1.

On the other hand, let g = (s1, . . . , sn, σ) ∈ G(r, p, n) be such that AA(g) = I.

Then we have

• (σ(i+ 1), si+1) = (σ(i) + 1, si), for all i ∈ [q − 1],

• (σ(i), si) = (i, 0), for all i ∈ [q + 1, n].

These two conditions force (s1, . . . , sn, σ) = (s, . . . , s︸ ︷︷ ︸
q

, 0, . . . , 0, Id); moreover, we have

the conditions s 6= 0 and p | qs. Hence

|{g ∈ G(r, p, n) : AA(g) = I}| = rq

p
− 1

and |{g ∈ G(r, p, n) : F (g) = I}| 6= {g ∈ G(r, p, n) : AA(g) = I}|.
The last equality follows as in the proof of Corollary 4.2. 2

Note that the bijection [σ(1)s1 , . . . , σ(n)sn ] 7→ [(n+1−σ(n))sn , . . . , (n+1−σ(1))s1 ]

shows that

|{(s1, . . . , sn, σ) ∈ G(r, n) : (σ(i− 1), si−1) = (σ(i)− 1, si) if and only if i ∈ I}|

= |{g ∈ G(r, n) : AA(g) = n+ 1− I}|

for all I ⊆ [n] (recall our convention that σ(0) = 0 and s0 = 0, for all (s1, . . . , sn, σ) ∈
G(r, n)). But, for J ⊆ [n], the cardinality |{g ∈ G(r, n) : AA(g) = J}| only depends

on |J |, by the proof of Corollary 4.3. Thus Corollary 4.3 can also be stated with

AA(g) in place of AA(g), where

AA(g) := {i ∈ [n] : (σ(i− 1), si−1) = (σ(i)− 1, si)}

for all g = (s1, . . . , sn, σ) ∈ G(r, n).

The previous results naturally suggest the following problem.
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Problem 4.4. Compute

|{g ∈ G(r, p, n) : F (g) = AA(g) = ∅}|

for all r, p, n ∈ P such that p | r.

In particular, it would be interesting to know if

lim
n→∞

|{g ∈ G(r, p, n) : F (g) = AA(g) = ∅}|
rnn!

exists.

If we think of a permutation of [n] as the result of shuffling a deck of n cards

(as Diaconis, Evans, and Graham do in [5]), and of a signed permutation (i.e., an

element of the hyperoctahedral group Bn) as the result of shuffling a deck of n cards

and then turning some of them face up, then our notion of “adjacent ascent”is not

the most natural one. Indeed, an “unseparated pair”in such a “signed”shuffle should

be a pair of cards that are adjacent (and hence both face down) at the beginning of

the shuffle (say 1 on top and 2 beneath 1) and remain in the same relative position

at the end of it. So, at the end of the signed shuffle, these two cards should be still

adjacent and either both face down (so 1 on the top) or both face up (so 1 on the

bottom). Thus we should analyse the integers i ∈ [n] such that σ(i+ 1) = σ(i) + 1.

It turns out that this set statistic is equidistributed with the one that we consider

in this section (AA(σ)), as we now show. In the following results, we use the usual

notation for the classical Weyl groups, as recalled in §2.

Lemma 4.5. Let n ∈ P. Then

|{σ ∈ Bn : {i ∈ [n− 1] : |σ(i+ 1)| = |σ(i)|+ 1, σ(i)σ(i+ 1) > 0} = I}| =

|{σ ∈ Bn : {i ∈ [n− 1] : σ(i+ 1) = σ(i) + 1} = I}|

for all I ⊆ [n− 1].

Proof. We prove this by exhibiting an appropriate bijection. Let σ ∈ Bn.

Let [α, ω] ⊆ [n] be such that σ(α − 1) > 0, σ(ω + 1) > 0 and σ(j) < 0 for all

α ≤ j ≤ ω, where the first two conditions are empty if α = 1 or if ω = n. Let σ̂ be

the element of Bn whose window notation is obtained from that of σ by changing

12



[σ(α), σ(α + 1), . . . , σ(ω)] to [σ(ω), σ(ω − 1), . . . , σ(α)], for all such intervals [α, ω].

The map σ 7→ σ̂ is an involution of Bn, and

{i ∈ [n] : σ−1(i+ 1) = σ−1(i) + 1} = AA((σ̂)−1)

for all σ ∈ Bn. 2

Note that the previous result also holds with Dn in place of Bn since the bijection

σ 7→ σ̂ restricts to Dn.

Corollary 4.6. Let n ∈ P. If n is odd, then

|{σ ∈ Dn : F (σ)∩[n−1] = I}| = |{σ ∈ Dn : {i ∈ [n−1] : σ(i+1) = σ(i)+1} = I}|

for all I ⊆ [n− 1].

Proof. This follows from Corollary 4.2 and the comment following Lemma 4.5.

2

Corollary 4.7. Let n ∈ P. Then

|{σ ∈ Bn : F (σ) = I}| = |{σ ∈ Bn : σ(i+ 1) = σ(i) + 1 if and only if i ∈ I}|

for all I ⊆ [n] (with the convention that σ(n+ 1) = n+ 1 for all σ ∈ Bn).

Proof. This follows from Corollary 4.3 and Lemma 4.5. 2

Corollary 4.8. Let n ∈ P. Then

|{σ ∈ Sn : F (σ) = I}| = |{σ ∈ Sn : AA(σ) = I}|

for all I ⊆ [n].

Note that Corollary 4.8 refines Theorem 2.2. Indeed, if I ⊆ [n− 1], then

|{σ ∈ Sn : F (σ) ∩ [n− 1] = I}| =

|{σ ∈ Sn : F (σ) = I}|+ |{σ ∈ Sn : F (σ) = I ∪ {n}}|

and similarly

|{σ ∈ Sn : AA(σ) ∩ [n− 1] = I}| =

|{σ ∈ Sn : AA(σ) = I}|+ |{σ ∈ Sn : AA(σ) = I ∪ {n}}|

and these two pairs of numbers are equal by Corollary 4.8.
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5 Variations

While there is a well established notion of fixed point of a colored permutation, we

feel that for the definition of “adjacent ascent”other possibilities also come fairly

naturally to mind. In this section, we study two other such possibilities.

Given g = (s1, . . . , sn, σ) ∈ G(r, n), we let

AA∗(g) := {i ∈ [n] : (σ(i+ 1), si+1) = (σ(i) + 1, 0)}

AA∗(g) := {i ∈ [n] : (σ(i+ 1), si) = (σ(i) + 1, 0)}.

Theorem 5.1. Let p, r, n ∈ P with p | r, I ⊆ [n], and J ⊆ [n − 1]. If I is J-

compatible, then

|{g ∈ G(r, p, n) : F (g) ⊇ I, AA∗(g) ⊇ J}| = (n− |I| − |J |)! · r
n−|I|−|J |+t

p

where t is the number of I-fixed blocks of PJ of cardinality at least 2.

Proof. For short, we set CI,J = {g ∈ G(r, p, n) : F (g) ⊇ I, AA∗(g) ⊇ J}. Let

(s1, . . . , sn, τ) ∈ G(r, n). It follows easily from our definitions that (s1, . . . , sn, τ) ∈
CI,J−1 if and only if p | (s1 + · · · + sn), τ(i) = i and si = 0 for all i ∈ I, and j and

j + 1 are adjacent in this order in the window notation of (s1, . . . , sn, τ) and the

color of j + 1 is 0 for all j ∈ J . Therefore, (s1, . . . , sn, τ) ∈ CI,J−1 if and only if

p | (s1 + · · ·+ sn), τ(i) = i and si = 0 for all i ∈ I, and t, t+ 1, . . . , j are adjacent in

this order in the window notation of (s1, . . . , sn, τ) and the color of t+ 1, t+ 2, . . . , j

is 0 for all blocks [t, j] of PJ (note that this condition is vacously satisfied if t = j).

Hence, (s1, . . . , sn, τ) ∈ CI,J−1 if and only if p | (s1 + · · · + sn), t, t + 1, . . . , j are

adjacent in this order in the window notation of (s1, . . . , sn, τ) and the color of

t+ 1, t+ 2, · · · , j is 0 for all blocks [t, j] of PJ and furthermore t, t+ 1, . . . , j appear

in positions t, t + 1, . . . , j, respectively, and j has color 0, for all fixed blocks [t, j].

Since I is J-compatible, all permutations of the free blocks of PJ occur in elements

of CI,J−1, and so |CI,J−1| = rm+t

p
m!, where m is the number of free blocks of PJ and

t is the number of fixed blocks of PJ of size at least 2. The result follows. 2

With this choice of “adjacent ascent”, the analogue of Theorem 2.2 holds for all

colored permutation groups G(r, p, n).
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Corollary 5.2. Let p, r, n ∈ P, with p | r. Then

|{g ∈ G(r, p, n) : F (g)∩ [n−1] = I}| = |{g ∈ G(r, p, n) : AA∗(g)∩ [n−1] = I}|,

for all I ⊆ [n− 1].

Proof. The proof is identical to that of the first implication of Corollary 4.2,

noting that, for all I ⊆ [n−1], there are no ∅-fixed blocks of PI , as well as no I-fixed

blocks of P∅ of size at least 2. 2

Note that the refined identity in Corollary 4.3 does not hold for AA∗(g), even

when p = 1. For example, if n = 4, r = 2, and I = [3, 4], then

{g ∈ G(2, 4) : F (g) = {3, 4}} = {(s1, s2, 0, 0, 2134) : s1, s2 ∈ {0, 1}}∪{(1, 1, 0, 0, 1234)}

while

{g ∈ G(2, 4) : AA∗(g) = {3, 4}}

= {(s, 1, 1, 0, 1234) : s ∈ {0, 1}} ∪ {(s1, s2, s3, 0, 2134) : s1, s2, s3 ∈ {0, 1}}.

We conclude by investigating our second variation of the concept of adjacent

ascent. Although at first sight it may seem to be closely related to the first variation,

it is in fact equivalent to the concept of adjacent ascent that we studied in §4.

Theorem 5.3. Let p, r, n ∈ P, with p | r. If I ⊆ [n] and J ⊆ [n− 1], with I ∩J = ∅,
then

|{g ∈ G(r, p, n) : F (g) ⊇ I, AA∗(g) ⊇ J}| = |{g ∈ G(r, p, n) : F (g) ⊇ I, AA(g) ⊇ J}|.

Proof. For short, set DI,J = {g ∈ G(r, p, n) : F (g) ⊇ I, AA∗(g) ⊇ J}. We show

that DI,J is in bijection with GI,J := GI,J(r, p, n) (see the definition before Theorem

4.1).

Let (s1, . . . , sn, τ) ∈ G(r, n). By reasoning as in the proof of Theorem 5.1, one

can see that (s1, . . . , sn, τ) ∈ D−1I,J if and only if t, t+1, . . . , j are adjacent in this order

in the window notation of (s1, . . . , sn, τ) and t, t+1, . . . , j−1 all have color 0, for all

blocks [t, j] of PJ , and furthermore t, t + 1, . . . , j appear in positions t, t + 1, . . . , j,

respectively, and sj = 0, for all fixed blocks [t, j] of PJ . Let g ∈ G−1I,J . Define ĝ to

be the colored permutation whose window notation is obtained from that of g by

changing to 0 the colors of t, t + 1, . . . , j − 1 for every free block [t, j] of PJ (recall

that, in this case, t, t + 1, . . . , j all appear adjacent in this order and all with the

same color in the window notation of g). The map g 7→ ĝ is a bijection between G−1I,J
and D−1I,J . 2
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6 Two bijections

In this section, we give bijective proofs of some of the results in this paper. More

precisely, we give bijective proofs of Corollary 4.2, for p = 1, and Corollary 5.2.

Recall that the canonical cycle decomposition of a permutation σ ∈ Sn is the

cycle decomposition of σ such that, in each cycle, the leading element is the least

element of the cycle and these leading elements form a decreasing sequence. Let

g = (s1, . . . , sn, σ) ∈ G(r, n). We define two cycle decompositions of g as follows.

The canonical cycle decomposition of g is obtained from the canonical cycle de-

composition of σ by coloring the leading element a of each cycle with sσ−1(a) (i.e.,

with the color that a has in the window notation) and an element following jc by

sj + c, where the sum is taken modulo r (so that the entry following an element jc

is g(jc)).

The canonical cycle decomposition colored from 0 of g is obtained from the canon-

ical cycle decomposition of σ by coloring the leading element a of each cycle with

sσ−1(a) and an element following jc with sj (so that each element is colored as in the

window notation).

For example, if g = [32, 20, 52, 61, 12, 41] ∈ G(3, 6), then the canonical cycle de-

composition of g is

(41, 62)(20)(12, 31, 50)

and the canonical cycle decomposition colored from 0 of g is

(41, 61)(20)(12, 32, 52).

In the spirit of [5], we define two bijections of G(r, n) to itself. Given g =

(s1, . . . , sn, σ) ∈ G(r, n), we let ĝ, g̃ ∈ G(r, n) be defined as follows: write g in its

canonical cycle decomposition (respectively, canonical cycle decomposition colored

from 0) and remove the parentheses to obtain the window notation of ĝ (respectively,

g̃). Note that, if g ∈ G(r, p, n), then g̃ ∈ G(r, p, n) while possibly ĝ ∈ G(r, n) \
G(r, p, n). We let ρ := [20, 30, . . . , n0, 10].

Theorem 6.1. Let p, r, n ∈ P, with p | r.

1. If g ∈ G(r, n) then

AA((ρ̂g)−1) ∩ [n− 1] = F (g) ∩ [n− 1].
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2. If g ∈ G(r, p, n) then

AA∗((ρ̃g)−1) ∩ [n− 1] = F (g) ∩ [n− 1].

Proof. By [5, Theorem 4.1], in both cases we only need to take care of the

colors.

(1). Let g = (s1, . . . , sn, σ), (ρ̂g)−1 = (r1, . . . , rn, τ), and ρ̂g = (c1, . . . , cn, τ
−1).

Suppose σ(i) = i, for some i ∈ [n − 1]. We know τ(i + 1) = τ(i) + 1. We need to

show that ri+1 = ri holds if and only if si = 0 holds. Since the colors of i and i+1 in

the window notation of ρ̂g are cτ(i) = −ri and cτ(i+1) = −ri+1 (where the equalities

are modulo r), we show that cτ(i+1) = cτ(i) holds if and only if si = 0 holds. By

construction, (i + 1)cτ(i+1) is not the leading element in its cycle in the canonical

cycle decomposition of ρg, and so it is preceded by icτ(i) ; hence cτ(i+1) = si + cτ(i) by

the definition of the coloring of the canonical cycle decomposition, and we are done.

(2). Let g = (s1, . . . , sn, σ), (ρ̃g)−1 = (r1, . . . , rn, τ), and ρ̃g = (c1, . . . , cn, τ
−1).

Suppose σ(i) = i, for some i ∈ [n − 1]. We know τ(i + 1) = τ(i) + 1. We now

need to show that ri+1 is 0 if and only if si is 0. Since, as above, the color of i + 1

in the window notation of ρ̃g is cτ(i+1) = −ri+1, we show that cτ(i+1) is 0 if and

only if si is 0. But, as above, (i + 1)cτ(i+1) is not the leading element in its cycle

in the decomposition of ρg, and so it is preceded by icτ(i) ; hence cτ(i+1) = si by the

definition of the coloring of the canonical cycle decomposition colored from 0, and

we are done. 2
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