We study the generation of singularities from the initial datum for a solution of the Cauchy problem for a class of Hamilton-Jacobi equations of evolution. For such equations, we give conditions for the existence of singular generalized characteristics starting at the initial time from a given point of the domain, depending on the properties of the proximal subdifferential of the initial datum in a neighbourhood of that point.

Albano, P., Cannarsa, P., Sinestrari, C. (2020). Generation of singularities from the initial datum for Hamilton-Jacobi equations. JOURNAL OF DIFFERENTIAL EQUATIONS, 268(4), 1412-1426 [10.1016/j.jde.2019.08.051].

Generation of singularities from the initial datum for Hamilton-Jacobi equations

Cannarsa P.;Sinestrari C.
2020-01-01

Abstract

We study the generation of singularities from the initial datum for a solution of the Cauchy problem for a class of Hamilton-Jacobi equations of evolution. For such equations, we give conditions for the existence of singular generalized characteristics starting at the initial time from a given point of the domain, depending on the properties of the proximal subdifferential of the initial datum in a neighbourhood of that point.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Generalized characteristics, Hamilton-Jacobi equations, Singularities, Viscosity solutions
The three authors have been partially supported by the Italian group GNAMPA of INdAM (Istituto Nazionale di Alta Matematica). P.C. acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. P.C. and C.S. have been partially supported by the Grant “Mission: Sustainability” 2016 (DOmultiage) of University of Rome Tor Vergata, E81I18000080005.
Albano, P., Cannarsa, P., Sinestrari, C. (2020). Generation of singularities from the initial datum for Hamilton-Jacobi equations. JOURNAL OF DIFFERENTIAL EQUATIONS, 268(4), 1412-1426 [10.1016/j.jde.2019.08.051].
Albano, P; Cannarsa, P; Sinestrari, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022039619303936-main.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 313.09 kB
Formato Adobe PDF
313.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/221957
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact