The share-everything PDES (Parallel Discrete Event Simulation) paradigm is based on fully sharing the possibility to process any individual event across concurrent threads, rather than binding Logical Processes (LPs) and their events to threads. It allows concentrating, at any time, the computing power—the CPU-cores on board of a shared-memory machine—towards the unprocessed events that stand closest to the current commit horizon of the simulation run. This fruitfully biases the delivery of the computing power towards the hot portion of the model execution trajectory. In this article we present an innovative share-everything PDES system that provides (1) fully non-blocking coordination of the threads when accessing shared data structures and (2) fully speculative processing capabilities—Time Warp style processing—of the events. As we show via an experimental study, our proposal can cope with hard workloads where both classical Time Warp systems—based on LPs to threads binding—and previous share-everything proposals—not able to exploit fully speculative processing of the events—tend to fail in delivering adequate performance.
Ianni, M., Marotta, R., Cingolani, D., Pellegrini, A., Quaglia, F. (2018). The Ultimate Share-Everything PDES System. In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (pp.73-84). Association for Computing Machinery.
The Ultimate Share-Everything PDES System
Ianni, M;Marotta, R;Pellegrini, A
;Quaglia, F
2018-05-01
Abstract
The share-everything PDES (Parallel Discrete Event Simulation) paradigm is based on fully sharing the possibility to process any individual event across concurrent threads, rather than binding Logical Processes (LPs) and their events to threads. It allows concentrating, at any time, the computing power—the CPU-cores on board of a shared-memory machine—towards the unprocessed events that stand closest to the current commit horizon of the simulation run. This fruitfully biases the delivery of the computing power towards the hot portion of the model execution trajectory. In this article we present an innovative share-everything PDES system that provides (1) fully non-blocking coordination of the threads when accessing shared data structures and (2) fully speculative processing capabilities—Time Warp style processing—of the events. As we show via an experimental study, our proposal can cope with hard workloads where both classical Time Warp systems—based on LPs to threads binding—and previous share-everything proposals—not able to exploit fully speculative processing of the events—tend to fail in delivering adequate performance.File | Dimensione | Formato | |
---|---|---|---|
Ian18.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Copyright dell'editore
Dimensione
838.51 kB
Formato
Adobe PDF
|
838.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.