We study nonnegative solutions of the Cauchy problempartial derivative(t)u + partial derivative(x)[phi(u)] = 0 in R x (0, T),u = u(0) >= 0 in R x 0,where u(0) is a Radon measure and phi [0, infinity) bar right arrow R is a globally Lipschitz continuous function. We construct suitably defined entropy solutions in the space of Radon measures. Under some additional conditions on phi, we prove their uniqueness if the singular part of u(0) is a finite superposition of Dirac masses. Regarding the behavior of phi at infinity, we give criteria to distinguish two cases: either all solutions are function-valued for positive times (an instantaneous regularizing effect), or the singular parts of certain solutions persist until some positive waiting time (in the linear case phi(u) = u this happens for all times). In the latter case, we describe the evolution of the singular parts.

Bertsch, M., Smarrazzo, F., Terracina, A., Tesei, A. (2020). Radon measure-valued solutions of first order scalar conservation laws. ADVANCES IN NONLINEAR ANALYSIS, 9(1), 65-107 [10.1515/anona-2018-0056].

Radon measure-valued solutions of first order scalar conservation laws

Bertsch M.
;
Tesei A.
2020-01-01

Abstract

We study nonnegative solutions of the Cauchy problempartial derivative(t)u + partial derivative(x)[phi(u)] = 0 in R x (0, T),u = u(0) >= 0 in R x 0,where u(0) is a Radon measure and phi [0, infinity) bar right arrow R is a globally Lipschitz continuous function. We construct suitably defined entropy solutions in the space of Radon measures. Under some additional conditions on phi, we prove their uniqueness if the singular part of u(0) is a finite superposition of Dirac masses. Regarding the behavior of phi at infinity, we give criteria to distinguish two cases: either all solutions are function-valued for positive times (an instantaneous regularizing effect), or the singular parts of certain solutions persist until some positive waiting time (in the linear case phi(u) = u this happens for all times). In the latter case, we describe the evolution of the singular parts.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
first order hyperbolic conservation laws; radon measure-valued solutions; entropy inequalities; uniqueness
Bertsch, M., Smarrazzo, F., Terracina, A., Tesei, A. (2020). Radon measure-valued solutions of first order scalar conservation laws. ADVANCES IN NONLINEAR ANALYSIS, 9(1), 65-107 [10.1515/anona-2018-0056].
Bertsch, M; Smarrazzo, F; Terracina, A; Tesei, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Bertsch_Advances_Nonlinear_Analysis_2020.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 825.42 kB
Formato Adobe PDF
825.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/215052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact