We give an example of a one-dimensional scalar Ising-type energy with long-range interactions not satisfying standard decay conditions and which admits a continuum approximation finite for all functions u in BV((0 , L) , [ - 1 , 1 ]) and taking into account the total variation of u. The optimal discrete arrangements show a periodic pattern of interfaces. In this sense, the continuum energy is generated by “diffuse” microscopic interfacial energy. We also show that related minimum problems show boundary and size effects in dependence of L.

Braides, A., Causin, A., Solci, M. (2018). Asymptotic analysis of a ferromagnetic Ising system with “diffuse” interfacial energy. ANNALI DI MATEMATICA PURA ED APPLICATA, 197(2), 583-604 [10.1007/s10231-017-0693-9].

Asymptotic analysis of a ferromagnetic Ising system with “diffuse” interfacial energy

Braides, Andrea;
2018-01-01

Abstract

We give an example of a one-dimensional scalar Ising-type energy with long-range interactions not satisfying standard decay conditions and which admits a continuum approximation finite for all functions u in BV((0 , L) , [ - 1 , 1 ]) and taking into account the total variation of u. The optimal discrete arrangements show a periodic pattern of interfaces. In this sense, the continuum energy is generated by “diffuse” microscopic interfacial energy. We also show that related minimum problems show boundary and size effects in dependence of L.
2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Discrete-to-continuum; Interfacial energies; Ising-type energies; Size effects; Applied Mathematics
http://springerlink.metapress.com/app/home/journal.asp?wasp=cmw755wvtg0qvm8kjj1q&referrer=parent&backto=linkingpublicationresults,1:108198,1
Braides, A., Causin, A., Solci, M. (2018). Asymptotic analysis of a ferromagnetic Ising system with “diffuse” interfacial energy. ANNALI DI MATEMATICA PURA ED APPLICATA, 197(2), 583-604 [10.1007/s10231-017-0693-9].
Braides, A; Causin, A; Solci, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BCS2016@AMPA@revised.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 541.32 kB
Formato Adobe PDF
541.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/211692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact