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Abstract

We give an example of a one-dimensional scalar Ising-type energy with long-
range interactions not satisfying standard decay conditions and which admits a
continuum approximation finite for all functions u in BV ((0, L), [−1, 1]) and taking
into account the total variation of u. The optimal discrete arrangements show a
periodic pattern of interfaces. In this sense, the continuum energy is generated
by “diffuse” microscopic interfacial energy. We also show that related minimum
problems show boundary and size effects in dependence of L.
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1 Introduction

Despite the vast Statistical Mechanics literature on Ising-type systems, in particular
those parameterized on a lattice, their treatment from the variational standpoint is
relatively recent and still incomplete. In the simplest case, such systems can be seen
as driven by an energy

−
∑
i,j

cijuiuj , (1)

where i, j belong to some subset of a lattice L and the variable ui takes the value in
{−1,+1}. Note that in the ferromagnetic case (i.e., when cij ≥ 0 for all i, j), up to
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additive and multiplicative constants, it is more handy to rewrite the energies in (1) as∑
i,j

cij(ui − uj)2 (2)

in order to have minimizers with zero energy and to avoid +∞ − ∞ indeterminate
forms in the case of infinite domains. The paper [14] by Caffarelli and de la Llave
provided a first homogenization result for periodic ferromagnetic Ising-type systems by
characterizing ground states as plane-like minimizers (see also the recent paper [6]).

A later work by Alicandro et al. [1] formalized the treatment of such systems in terms
of Γ-convergence. Those authors set the problem in the framework of a discrete-to-
continuum analysis, scaling the energies and characterizing the continuum limit within
the theory of interfacial energies defined on partitions by Ambrosio and Braides [4],
and also treating some antiferromagnetic case. In that approach the energies are scaled
by a small parameter ε > 0 as ∑

i,j

εd−1cij(ui − uj)2, (3)

where now i, j are supposed to belong to εL and d is the dimension of the ambient
space; i.e., L ⊂ Rd. Note the d− 1-th power in (3), corresponding to a surface scaling.

In the case of ferromagnetic systems, the macroscopic magnetization parameter u
still only takes the values ±1, and the continuum-limit energy has the form∫

∂{u=1}
ϕ(ν) dHd−1, (4)

where ν is the measure-theoretical normal to the set of finite perimeter {u = 1}. A
general homogenization theorem within the class of ferromagnetic spin system was
proved by Braides and Piatnitski also allowing for random coefficients [11]. In all
those cases the limit problem is of the form (4). Applications of this result comprise
the description of quasicrystalline structures [7, 12] and optimal design problems for
networks [9, 10]. Moreover, the homogenization result for periodic systems has been
recently extended to some types of antiferromagnetic interactions when the limit is
instead parameterized on partitions into sets of finite perimeter [8] and can be written
as a sum of energies of the form (4).

Alicandro and Gelli [3] have recently remarked that if we take ε-depending coeffi-
cients, i.e., we allow for energies of the form∑

i,j

cεij(ui − uj)2 (5)

in place of (2), still within the framework of the discrete-to continuum analysis of
ferromagnetic systems with surface scaling, then the limit functional might contain
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non-local terms, of the form∫
k(x, y, u(x)− u(y)) dµ(x, y), (6)

for suitable measures µ and kernels k.
Different scalings of the energies are also possible. In [2] Alicandro et al. have

examined the bulk scaling ∑
i,j

εdf(ui, uj), (7)

for general f (and ui taking values in a more general set), showing that the limit is a
bulk integral ∫

g∗∗(u) dx (8)

(g∗∗ denotes the convex envelope of g). Note however that in the ferromagnetic spin
case g is trivial, and can be interpreted as a double-well potential with minima in
±1. As a consequence, when the hypothesis of [3] are satisfied, formally, ferromagnetic
Ising-type systems can be approximated in the continuum as an expansion∫

g(u) dx+ ε

∫
∂{u=1}

ϕ(ν) dHd−1 + . . . (9)

(see [5, 13]). This expression highlights a separation of scales effect, which suggests
that either a bulk or a surface scaling have to be taken into account (depending on the
problem at hand), unless higher-order scalings come into play.

In this paper we show that this is not the case for general ε-depending Ising-type
energies with a simple example in dimension one. Even though we maintain the sugges-
tive terminology of Statistical Mechanics, our motivation is towards the understanding
of the behaviour of general lattice systems with a complex topology of the interactions
beyond the application to problems in Physics. To that end, the choice of the simplest
type of interactions (ferromagnetic) allows to focus our analysis on the effect of the
topology of the graph of the interacting sites of the lattice.

In the notation above, the energies we will examine can be written as in (5) with
cεij = 1 if |i − j| = 1 or |i − j| = b1/

√
εc, and cεij = 0 otherwise. These energies have

long-range interactions which do not satisfy the decay conditions on cεij required in [3]
to obtain an integral representation as an interfacial energy. The key feature of these
energies is the non-trivial topology of the corresponding graph, which corresponds to
that of a two-dimensional square lattice with nearest-neighbour interactions, and not
the range of the interaction themselves. Indeed, note that if we take into account all
interactions up to distance b1/

√
εc, e.g., taking cεij = 1 if |i− j| ≤ b1/

√
εc and cεij = 0

otherwise, this can instead be seen as a superposition of usual one-dimensional nearest-
neighbour ferromagnetic lattice Ising systems and, after the proper renormalization,
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gives a sharp-interface energy; i.e., with the constraint on the limit energy domain that
u ∈ {−1, 1} almost everywhere (see Remark 3).

We will instead show that energies (5) have a meaningful limit, which is not of the
forms described above, at an intermediate scale between the bulk and surface scales
(namely, at the scale

√
ε). More precisely, if we examine the discrete-to-continuum

limit of ∑
i,j

√
ε cεij(ui − uj)2, (10)

restricted to the portion of εZ contained in an interval (a, b), then the continuum
parameter u is a function with bounded variation taking values in [−1, 1], and, denoted
by Du its derivative in the sense of distributions (which is a measure on (a, b)), we have
a limit energy

2|{x ∈ (a, b) : −1 < u(x) < 1}|+ |Du|(a, b). (11)

Hence, the effect of the interaction coefficients is not strong enough to force that u ∈
{±1} but strong enough to give a dependence on |Du|.

Figure 1: Pictorial representation of optimal configurations for five different volume
fractions: each line represents the “shape” of a minimizer of the limit energy with a
prescribed integral; the black dots stand for u = 1

Contrary to the usual sharp-interface limit models, where the corresponding discrete
functions simply exhibit a sharp separation of the indices where the value is 1 or −1,
optimal arrangements for the energy in (11) highlight interesting features of the optimal
arrangements for the discrete energy. Such geometries show a periodic pattern of the
interfaces. In this sense, we interpret the limit energy as generated by a “diffuse”
microscopic interfacial energy. In order to highlight the effect of these microgeometries,
the behaviour of some minimum problems will be studied in Section 4. In Fig. 1
we picture discrete minimizers u of the limit energy in a small (fixed) interval (a, b),
under the constraint of prescribed average |b− a|−1

∫ b
a u dt = σ. In the terminology of

Statistical Physics those minimizers would describe microscopic states for a value σ of
the limit magnetization. We represent five different cases with increasing values of the
integral average σ ∈ [−1, 0], the case σ ∈ [0, 1] being symmetric. Circles represent points
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in εZ, the black ones being those where ui = 1 and the white ones those where ui = −1.
For values of σ close to −1 we have a partial concentration on one side of the interval,
which grows until a certain threshold, after which the function u is (approximately)
periodically distributed over the whole interval. We note that this description is much
easier when obtained from the continuum energy rather than directly examining the
discrete energies.

The idea behind the proof of the continuum approximation is that the energy in (5)
can be equivalently interpreted as defined on the two-dimensional lattice b1/

√
εcZ2 if

nearest-neighbours in Z are interpreted as nearest-neighbours in the vertical direction
in b1/

√
εcZ2 and, correspondingly, b1/

√
εc-neighbours in Z as nearest-neighbours in the

horizontal direction in b1/
√
εcZ2. With this identification the energy becomes a simple

nearest-neighbour interaction energy in dimension two, of which we can compute the
Γ-limit in the surface scaling. Reinterpreting the limit in dimension one gives the form
(11) after some technical arguments.

The interest in this example is that the limit is characterized by the non-trivial
topology of the graph of the connections i, j with cεij = 1. This argument is different
from the measure-theoretical ones used in the previous articles cited above, and can be
generalized to systems of interactions whose graph of connections can be mapped into an
n-dimensional Bravais lattice. We hope it will be useful to give a better understanding
of the variational approximation of Ising-type systems on general graphs [15].

We complement the analysis with a study of the minimum problems for the limit
energy both when a volume constraint is taken into account and when periodic condi-
tions are imposed, thus recovering the behaviour of minimizers for the discrete problems
by Γ-convergence. It is interesting to note how the “two-dimensional” topology of the
lattice interactions produces a complex structure of the minimum energy landscape in
dependence of the parameters of the problem, and in particular a size effect highlighted
by the dependence on the width of the underlying interval. Furthermore, in the peri-
odic case another parameter intervenes given by the “defect” of b1/

√
εc-periodicity of

the interval (normalized to a number between 0 and 1). Correspondingly, a boundary
term must be added to the Γ-limit, which further influences the shape of minimizers
for certain values of that parameter.

The paper is organized as follows: in Section 2 we state the main Γ-convergence
result (Theorem 1), whose proof is given in Section 3 by showing the lower and upper
inequalities. In Section 4 we examine the behaviour of the minimizers of the functionals
subjected to a volume constraint; in particular, we prove a compatibility result (Theo-
rem 6) and we describe the “size effect” on the shape of the minimizer in dependence
on the size of the domain and on the volume. In Section 5 we conclude the analysis by
studying the effect of periodic boundary conditions. The Γ-convergence result in the
periodic case is given in Theorem 10.
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2 Statement of the result

For the sake of notational simplicity, we consider a discrete parameter n ∈ N in the
place of ε. In the notation used in the Introduction we choose ε = 1

n2 , so that 1√
ε

= n.
Moreover, we will consider spin functions with values in {0, 1} instead of {−1, 1}.

For each n ∈ N we define

En =
{
{i, j} : i, j ∈ N ∩ (0, n2] and |i− j| = 1 or |i− j| = n

}
. (12)

This set of indices corresponds to i, j such that cεij 6= 0 in (10).
Let An be the set of the functions u : (0, 1] → {0, 1} with u constant on each

interval ( i−1
n2 ,

i
n2 ], i = 1, . . . , n2. Such a u corresponds to a discrete function, which

we still denote by u, defined as its restriction to
(

1
n2 N

)
∩ (0, 1]. We will denote ui for

u
(
i
n2

)
.

Now, for u ∈ An we define the functional

Fn(u) =
1
n

∑
{i,j}∈En

(ui − uj)2. (13)

This is a rewriting of energy (10), with the scaling 1
n , and with the constraint ui ∈

{0, 1} instead of ui ∈ {−1,+1}. Note that this corresponds to a scaling
√
ε, which

is intermediate between the bulk scaling ε and the surface scaling (since the latter
corresponds to no scaling of the energy in dimension one).

We prove the following Γ-convergence result.

Theorem 1. The sequence of functionals {Fn} Γ-converges with respect to the weak-∗
convergence in L∞(0, 1) to the functional F : L∞(0, 1)→ [0,+∞] given by

F (u) =
{

2H1({x : 0 < u(x) < 1}) + |Du|(0, 1) if u ∈ BV (0, 1), 0 ≤ u ≤ 1
+∞ otherwise.

(14)

1 /n 1 /n
2

1

1 /n
2

1 /n

1

1/n

1

Figure 2: Identification of a spin function with a set in R2
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To explain the form of the limit energies it is convenient to reinterpret the energies
Fn in a two-dimensional setting. Indeed, the decomposition i

n2 = hi−1
n + ki

n2 with
hi, ki ∈ {1, . . . , n} induces a one-to-one correspondence between

(
1
n2 N

)
∩ (0, 1] and(

1
nN2

)
∩ (0, 1]2 given by i

n2 7→ 1
n(hi, ki). With this construction, we map each interval

( i−1
n2 ,

i
n2 ] to the square (hi−1

n , hin ] × (ki−1
n , kin ] so that any function u ∈ An can be

represented as the characteristic function of a subset of (0, 1]2 (see Fig. 2). Hence, we
will study the asymptotic behaviour of the sequence Fn as n→ +∞ by using the results
for the Γ-convergence for nearest-neighbour interaction energies in the two-dimensional
square lattice 1

nZ2. These energies are defined by

En(v; Ω) =
1
n

∑
{z,z′}∈N (nΩ)

(vz − vz′)2 (15)

for v : 1
nZ2 → {0, 1} and Ω a Lipschitz open subset of R2. The sum is running over

the set N (nΩ) of the pairs of nearest neighbours in nΩ ∩ Z2, and vz stands for v( zn).
The behaviour of En is characterized by the following result (see [1, Th. 4.1] and also
[14]), where it is understood that each function v is extended as a piecewise-constant
function to each square z + [0, 1

n)2.

Proposition 2 ([1] Theorem 4.1). The sequence {En} is equicoercive on L1
loc(Ω). Its

Γ-limit in the strong L1(Ω) convergence is finite only on functions u ∈ BV (Ω; {0, 1});
i.e., on characteristic functions of sets of finite perimeter, and its value is

F 1(u) = Per1({u = 1}; Ω) :=
∫
∂∗{u=1}

‖νu‖1dH1, (16)

where νu denotes the interior normal to ∂∗{u = 1} and ‖ν‖1 = |ν1|+ |ν2|.

Remark 3. We now remark that considering energies taking into account all inter-
actions up to distance b1/

√
εc on the same energy scale gives a sharp-interface limit,

highlighting that the relevant feature of our result is the non-trivial topology of the
graph of the interactions and not the size of their range.

We take cεij = 1 if |i− j| ≤ b1/
√
εc and cεij = 0 otherwise. The correct scaling gives

the energy

Eε(u) :=
1/
√
ε∑

k=1

∑
i

ε(ui+k − ui)2

The Γ-limit F of such an energy is finite only if u ∈ BV ((0, 1), {0, 1}), in which case
we have F (u) = 1

2#(S(u)), where S(u) is the set of essential discontinuity points of u.
The proof of this fact does not follow from the theory in [3], but may be obtained

by a coarse-graining argument. We only sketch the proof: take a sequence {uε} with
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equibounded energy. With 0 < η < 1/8 fixed, we subdivide the indices into families of
1

2
√
ε

successive indices (we may suppose that this value is an integer). We first note that
Eε(uε) is larger than a constant (independent of η < 1/8) times the number of pairs of
consecutive families of indices on which the average is larger than 1− η and lower that
η, respectively. Moveover, Eε(uε) is also larger than a constant (depending on η) times
the number of families for which the average of uε on such a family is between η and
1 − η. Hence there is an equibounded number of such families, independent of ε. We
then deduce that we have a finite number of intervals on which either u ∈ [1− η, 1] or
u ∈ [0, η]. By the arbitrariness of η we deduce that BV ((0, 1), {0, 1}). Once it is proven
that the limit u has only a finite number of interfaces, the proof of the Γ-limit is a
simple computation, taking the function u itself (or, more precisely, its discretization)
as a recovery sequence. As a result we obtain

lim
ε→0

ε

1/
√
ε∑

k=1

k =
1
2

as the energy of each interface.

3 Proof of the result

We separately prove the upper and lower bounds for the Γ-limit.

Proposition 4 (Lower bound). Let {un} be a sequence with un ∈ An such that Fn(un)
is equibounded. Then there exists u ∈ BV (0, 1) such that, up to subsequences, un

∗
⇀ u

in L∞(0, 1) and
lim inf
n→+∞

Fn(un) ≥ F (u). (17)

Proof. The key point of the proof is the construction of a suitable sequence of functions
vn : 1

nZ2 → {0, 1} such that for any % > 0 and for a suitable choice of η we have

Fn(un; (%, 1− %)) ≥ En(vn;Qη%)

provided that n > 1
% , where Qη% = (%, 1− %)× (−η, 1− η), En is the nearest-neighbour

interaction energy defined in (19), and for A ⊂ (0, 1] Fn(·;A) is the localized version of
Fn defined by

Fn(u;A) =
1
n

∑
{i,j}∈En(A)

(ui − uj)2 (18)

with
En(A) =

{
{i, j} : i, j ∈ N ∩ n2A and |i− j| = 1 or |i− j| = n

}
. (19)
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Let {un} be such that un ∈ An and Fn(un) ≤ c < +∞. Since {un} is equibounded
in L∞(0, 1) we can assume that (up to subsequences) un

∗
⇀ u in L∞(0, 1). Denoting

for all j = 1, . . . , n by αjn the integral mean

αjn = n

∫
Ijn

un(t) dt =
1
n

n∑
k=1

un

(j − 1
n

+
k

n2

)
,

where Ijn = ( j−1
n , jn ], we define ûn in each Ijn by setting

ûn =

{
1 in ( j−1

n , j−1
n + αjn

n ]
0 in ( j−1

n + αjn
n ,

j
n ]

(20)

if 0 < αjn < 1, and ûn = un otherwise (see Fig. 3).

αn

j
/n1 /n

1

n

1 /n
2

αn

j

1 1

ûnun

I n
j

1

I n
j

Figure 3: Construction of test functions for the lower bound

Note that in each Ijn this construction corresponds to setting ûn = 1 in the first
nαjn points of Ijn ∩ ( 1

n2 N), and 0 in the remaining n− nαjn. By construction, it follows
that ûn weakly* converges in L∞(0, 1) to the same limit u, and

Fn(un) ≥ Fn(ûn). (21)

Indeed, with regard to the nearest-neighbour connections, since ûn has at most one
jump in ( j−1

n , jn), then, denoted by S(v) the set of discontinuity points of a function v,
#S(ûn) = min{#S(un), 2} in each interval Ijn for j < n, and #S(ûn) = min{#S(un), 1}
in Inn . Concerning the long range interactions, for each pair of adjacent intervals Ij−1

n ,
Ijn the energy Fn(un) counts the number of points in the symmetric difference (n +
Kj−1(un))4Kj(un), where Kj(u) = {i : ui = 1, i

n2 ∈ Ijn}. The inequality (21) follows

9



by noting that

#
(
(n+Kj−1(un))4Kj(un)

)
≥

∣∣∣#(n+Kj−1(un))−#Kj(un)
∣∣∣

= #
(
(n+Kj−1(ûn))4Kj(ûn)

)
.

Now, we define the set Gn =
⋃n
j=1R

j
n where Rjn = [ j−1

n , jn ]× [0, αjn] for any j = 1, . . . , n.
By construction, in each Qn(j, k) = ( j−1

n , jn ] × (k−1
n , kn ] we have χGn = ûn( j−1

n + k
n2 ).

Hence, with fixed % > 0, for all n > 1
%

Fn(ûn) ≥ 1
n

∑
{z,z′}∈N (0,n]2

(
(χGn)z − (χGn)z′

)2
≥ 1

n

∑
{z,z′}∈N (nQ0

%)

(
(χGn)z − (χGn)z′

)2 = En(χGn ;Q0
%)

Then, recalling Proposition 2, since En(χGn ;Q0
%) = H1(∂Gn ∩Q0

%), by compactness we
deduce that (up to subsequences) Gn converges in measure to a set of finite perimeter
G ⊂ Q0

%.
In order to optimize the lower estimate, we also have to consider the part of the

energy Fn(ûn) that comes from the interactions between j
n and j

n+ 1
n2 for j = 1, . . . , n−

1, corresponding to the length of the intersection of {y = 0} with the boundary of the
periodic extension of Gn to (0, 1)2 + (1/n,−1) in (0, 1)2 ∪ ((0, 1)2 + (1/n,−1). Setting
G̃n = Gn ∪ (Gn + (1/n,−1), for any η ∈ (0, 1) we have the estimate

Fn(ûn) ≥ En(χG̃n ;Qη%). (22)

Note that G̃n converges in measure to G̃ = G ∪ (G + (0,−1)) in Q0
% ∪ (Q0

% + (0,−1)).
Since we can find η ∈ (0, 1) such that

H1(∂∗G ∩ {y = 1− η}) = 0 (23)

as G is a set of finite perimeter, then

H1(∂∗G̃ ∩Qη%) = H1(∂∗G ∩Q0
%) +H1(∂∗G ∩ {y = 0} ∩Q0

%).

Hence, for such η, by applying the lower estimate for En given by Proposition 2 we
get

lim inf
n→+∞

En(χG̃n ;Qη%) ≥
∫
∂∗G̃∩Qη%

‖νG̃‖1 dH
1

=
∫
∂∗G∩Q0

%

‖νG‖1 dH1 +H1(∂∗G ∩ {y = 0} ∩Q0
%).

(24)
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Now, we show that the weak∗ limit u of un belongs to BV , and G is in fact its
subgraph. We start by considering the piecewise constant function un defined by setting

un(x) = n

∫
Ijn

ûn(t) dt = n

∫
Ijn

un(t) dt for x ∈ Ijn

for each j. By construction, the set Gn is the subgraph of un; that is, (x, y) ∈ Gn
if and only if 0 ≤ y ≤ un(x). Moreover, {un} is a Cauchy sequence in L1(%, 1 − %)
since Gn converges in measure. By construction, un

∗
⇀ u in L∞(0, 1), hence un → u

in L1(%, 1 − %). Since Gn is the subgraph of un, the pointwise almost-everywhere
convergence of un ensures that (x, y) ∈ G if and only if 0 ≤ y ≤ u(x) almost everywhere
in Q0

%.
Since G has finite perimeter, u is a BV function. Moreover, since

H1(∂∗G ∩ {y = 0} ∩Q0
%) = H1({x ∈ (%, 1− %) : 0 < u(x) < 1}),

we have ∫
∂∗G∩Q0

%

‖νG‖1 dH1 +H1(∂∗G ∩ {y = 0} ∩Q0
%)

= H1({x ∈ (%, 1− %) : 0 < u(x) < 1}) + |Du|(%, 1− %)
= F (u; (%, 1− %)). (25)

Indeed, note that

νG(x, y) =
(u′, 1)√
1 + |u′|2

x-a.e. and νG(x, y) = (1, 0)
Dsu

|Dsu|
|Dsu|-a.e.

so that ∫
∂∗G∩Q0

%

‖νG‖1 dH1 +H1({x ∈ (%, 1− %) : u(x) ∈ {0, 1}})

=
∫ 1−%

%

1 + |u′|√
1 + |u′|2

√
1 + |u′|2dx+

∫
(%,1−%)

|Dsu|

= |Du|(%, 1− %) +H1(%, 1− %).

Hence, by estimates (21), (22), (24) and (25), we get the liminf inequality

lim inf
n→+∞

Fn(un) ≥ F (u; (%, 1− %)) (26)

for any % > 0.
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Proposition 5 (Upper bound). Given u ∈ BV (0, 1) with values in [0, 1] there exists a
recovery sequence {un} such that un ∈ An, un

∗
⇀ u in L∞(0, 1) and

lim sup
n→+∞

Fn(un) ≤ F (u). (27)

Proof. As a first step, we show that it is sufficient to prove the limsup inequality for u
piecewise constant. To this end, we first use a mollification argument. We choose η > 0
such that both η and 1 − η are approximate continuity points for u, and we extend u
by reflection in (−η, 0) and (1, 1 + η); namely,

u(x) = u(−x) if x ∈ (−η, 0) and u(x) = u(2− x) if x ∈ (1, 1 + η).

Denoting this extension by uη : (−η, 1 + η)→ R it follows that

|Duη|(−η, 1 + η) ≤ |Du|(0, 1) + o(1)η→0. (28)

Now, let {%ε} be a sequence of smooth convolution kernels such that, for any ε > 0,∫
R %ε(t) dt = 1 and supp(%ε) = [−ε, ε]; setting uηε = uη∗%ε, for ε < η we get the estimate

|Duηε |(0, 1) ≤ |Duη|(−ε, 1− ε) ≤ |Duη|(−η, 1− η). (29)

Since we need to estimate the measure of the set where the values of each function
belong to (0, 1), we set for any δ ∈ (0, 1)

uη,δε =
(((

uηε −
1
2

)
(1 + δ) +

1
2

)
∨ 0
)
∧ 1;

with this definition, 0 < uη,δε < 1 implies δ
4 ≤ uηε ≤ 1 − δ

4 ; then, the properties of the
convolution ensure that

|{x ∈ (0, 1) : 0 < uη,δε < 1}| ≤ |{x ∈ (0, 1) : δ4 ≤ u
η
ε ≤ 1− δ

4}|
≤ |{x ∈ (0, 1) : 0 < uη < 1}|+ 2ε.

(30)

Since
|Duη,δε |(0, 1) ≤ (1 + δ)|Duηε |(0, 1),

recalling (28), (29) and (30) we get

F (uη,δε ) ≤ (1 + δ)(F (u) + o(1)η→0) + 2ε.

Hence for any σ > 0 we can find η, ε and δ small enough to have ‖u− uη,δε ‖L1 < σ and

F (uη,δε ) ≤ F (u) + σ. (31)
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Now we construct a sequence {uk} of piecewise-constant functions (where we omit the
dependence on η, ε and δ) such that uk → uη,δε in L1(0, 1) as k → +∞ and

F (uk) ≤ F (uη,δε ). (32)

For any fixed integer k ≥ 1 we consider the intervals J ik = ( i−1
k , ik ]; since uη,δε ∈ C0[0, 1],

for k large enough either J ik∩{u
η,δ
ε = 0} = ∅ or J ik∩{u

η,δ
ε = 1} = ∅ for any i = 1, . . . , k.

Hence, for such k we can define uk by setting in each J ik

uk =


0 if J ik ∩ {u

η,δ
ε = 0} 6= ∅

1 if J ik ∩ {u
η,δ
ε = 1} 6= ∅

uη,δε ( ik ) if J ik ⊂ {0 < uη,δε < 1}.

Note that the uniform continuity of uη,δε ensures the uniform convergence of uk → uη,δε ,
hence uk → uη,δε in L1(0, 1). By construction we have that for k large enough

H1({0 < uk < 1}) ≤ H1({0 < uη,δε < 1}), |Duk|(0, 1) ≤ |Duη,δε |(0, 1),

hence (32) holds and it is sufficient to prove the lim sup-inequality for u piecewise
constant (see [5] Remark 1.29).

u

1 1

x
m−1

x
m xn

m−1
xn
m

c
m

x
m−1

x
m

10 10

ũn

un
1

cn
m ( j )/n

cn
m

ũn

xn
m ( j )−1

( j−1)/n j /n

xn
m ( j )

10

cn
m

c
m

u

Figure 4: Construction of a recovery sequence

Let u be a piecewise-constant function given by the partition {xm}km=0 and values
cm ∈ [0, 1] such that u = cm in (xm−1, xm) for m = 1, . . . , k (see the first picture in
Fig. 4). For each m = 0, . . . k we set xmn = bnxmc

n ; we define ũn by setting ũn = cmn =
bncmc
n in each interval (xm−1

n , xmn ) (see the second picture in Fig. 4). In this way we get
the inequality

F (ũn) ≤ F (u) +
k

n
. (33)
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Now, we can construct the recovery sequence un similarly as we did in (20) in the
proof of the liminf inequality. For each j let m(j) ∈ {1, . . . , k} be such that ( j−1

n , jn) ⊂
(xm(j)−1
n , x

m(j)
n ); we define un in ( j−1

n , jn ] by setting

un =

{
1 in ( j−1

n , j−1
n + c

m(j)
n
n ]

0 in ( j−1
n + c

m(j)
n
n , jn ]

if cm(j)
n 6= 0, 1, un = 0 if cm(j)

n = 0 and un = 1 if cm(j)
n = 1 (see the third picture in

Fig. 4).
Note that un

∗
⇀ u in L∞(0, 1). By construction Fn(un) = F (ũn), hence

lim sup
n→+∞

Fn(un) ≤ F (u) (34)

after recalling (33).

4 Volume-constrained minimization problems

In this section we examine the behaviour of functionals Fn subjected to the constraint
of fixing the number of i such that ui = 1. Since the form of the minimizers of such a
constraint depends on the size of the domain, we extend the previous result to functions
defined on [0, L] for any L > 0.

4.1 Compatibility of the volume constraint

Let kn be a sequence of integers such that 0 ≤ kn ≤ Ln2 such that

lim
n→+∞

kn
Ln2

= σ ∈ (0, 1).

Let Ln = bLn2c
n2 and An(L, kn) be the set of the functions u : (0, Ln] → {0, 1} with u

constant on each interval ( i−1
n2 ,

i
n2 ], i = 1, . . . , bLn2c and such that

#
{
i ∈ {1, . . . , bLn2c} : ui = 1

}
= kn, (35)

where ui stands for u
(
i
n2

)
as previously. Such a u corresponds to a discrete function,

which we still denote by u, defined as its restriction to
(

1
n2 N

)
∩ (0, L]. If necessary we

extend each such function to 0 outside (0, Ln]. Such an extension does not modify the
energies we are going to consider and makes convergence statements easier.

We set

En(L) =
{
{i, j} : i, j ∈ N ∩ (0, Ln2] and |i− j| = 1 or |i− j| = n

}
. (36)
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For u ∈ An(L, kn) we define the functional

FL,knn (u) =
1
n

∑
{i,j}∈En(L)

(ui − uj)2. (37)

Theorem 6 (compatibility of volume constraints). The sequence of functionals {FL,knn }
Γ-converges with respect to the weak-∗ convergence in L∞(0, L) to the functional FL,σ :
L∞(0, L)→ [0,+∞] given by

FL,σ(u) =


2H1({x ∈ (0, L) : 0 < u(x) < 1}) + |Du|(0, L)

if u ∈ BV (0, L), 0 ≤ u ≤ 1,
∫ L

0
u dx = Lσ

+∞ otherwise.

(38)

Proof. Since functions satisfying the integral constraint (35) converge to functions sat-
isfying

∫ L
0 u dx = Lσ, the liminf inequality is immediately satisfied. It remains to prove

the existence of a recovery sequence for u in the domain of FL,σ. By a density ar-
gument, it suffices to treat the case of u piecewise constant since the construction in
the proof of Proposition 5 is compatible with the integral constraint. Moreover, we
may reduce to treat the case of u constant, since the construction below is immediately
extended to a piecewise-constant u.

We now exhibit a recovery sequence for the constant target function u = σ in (0, L).
Writing kn = (bLnc + 1)an + bn with an ∈ {0, . . . , n} and bn ∈ {0, . . . , bLnc}, we

construct a function vn defined in (0, bLnc+1
n ] as follows. We denote by λn the number

bLn2c − nbLnc (measuring the ‘defect of periodicity’ of the interval [0, L]) and define
vn as follows.
• If an ≤ λn then we have two constructions, according to bn: in each ( j−1

n , jn ] with
bn ≥ j we set

vn =
{

1 in ( j−1
n , j−1

n + an+1
n2 ]

0 in ( j−1
n + an+1

n2 , jn ];

in each ( j−1
n , jn ] with bn < j we set

vn =
{

1 in ( j−1
n , j−1

n + an
n2 ]

0 in ( j−1
n + an

n2 ,
j
n ];

• If λn < an < n, then we write an − λn + bn = γnbLnc+ δn, with δn < bLnc, and
the constructions are as follows: if δn ≥ j we set

vn =
{

1 in ( j−1
n , j−1

n + an+γn+1
n2 ]

0 in ( j−1
n + an+γn+1

n2 , jn ]
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and if δn < j

vn =
{

1 in ( j−1
n , j−1

n + an+γn
n2 ]

0 in ( j−1
n + an+γn

n2 , jn ]

Now, we define un as the restriction of vn to (0, Ln]. Note that #{i ∈ {1, . . . , bLn2c} :
(un)i = 1} = kn, that is un ∈ A(L, kn).

Since an 6= 0 for n large enough, the number of {i, j} such that |i − j| = 1 and
(un)i 6= (un)j is bounded by 2(bLnc+ 1), and the number of jumps between points at
distance n is at most 1. Hence

FL,knn (un) ≤ 1
n

(2bLnc+ 3) = 2L+ o(1)n→+∞ = FL,σ(u) + o(1)n→+∞. (39)

4.2 A size effect

As a consequence of Theorem 6, minimum problems for FL,knn (i.e., volume-constrained
minimum problems for Fn on [0, L]) converge to the minimum problem

min
{

2H1({x ∈ (0, L) : 0 < u(x) < 1}) + |Du|(0, L) :

u ∈ BV ((0, L); [0, 1]),
∫ L

0
u dx = σL

}
. (40)

This problem can be simplified by remarking that
• if u takes the values 1 and 0 on a set of non-zero measure then H1({x ∈ (0, L) :

0 < u(x) < 1}) = 0. Indeed if u takes the values 1 and 0 then |Du| ≥ 1, and the
function v(x) = χ[0,σL] has a lower energy than u;
• we may assume that {x ∈ (0, L) : 0 < u(x) < 1} is an interval and u is constant

on {x ∈ (0, L) : 0 < u(x) < 1}.
We end up with four cases:

A) the minimum is umin = σ. In this case, FL,σ(umin) = 2L;

B) the minimum is umin = χ[0,σL]. In this case, FL,σ(umin) = 1;

C) the minimum is obtained by minimizing on functions of the form u = σL
y χ[0,y].

In this case, FL,σ(umin) = 2
√

2σL;

D) the minimum is obtained by minimizing on functions of the form u = 1 −
(1−σ)L

y χ[0,σy]. In this case, FL,σ(umin) = 2
√

2(1− σ)L.
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L=2σ

8Lσ=1

2L=1

L

σ

σ=1

2σ=1

8L(1−σ)=1

L=2−2σ

A B

C

D

Figure 5: Description of minimizers

In addition, note that the behaviour of the minimum problems is the same for σ
and 1− σ, so that it is sufficient to examine the case σ ≤ 1/2. An explicit calculation
yields the analysis highlighted in Fig. 5.

Remark 7 (size effect for volume-constrained minimization). As remarked above, it
is not restrictive to limit our description to σ ≤ 1/2. We have two different behaviours
depending on L.

σ=
L

2
σ<

L

2

L

2
<σ<1−

L

2
σ=1−

L

2
σ>1−

L

2

Figure 6: Evolution of the form of the minimizers in small domains

Small-size domain: if L < 1
2 then we have

i) for σ < L
2 the minimizers are

u1 =
√

2σLχ[0, 1
2

√
2σL], u2 =

√
2σLχ[L− 1

2

√
2σL,L];

ii) for σ = L
2 the minimizers are the constant u = σ and the two functions

u1 = Lχ[0,L/2], u2 = Lχ[L/2,L];
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iii) for L
2 < σ the minimizer is the constant u = σ.

In Fig. 6 we picture two-dimensional sets corresponding to minimizers of the energy
at varying σ. The length of the part of the sets highlighted in the figure gives the
corresponding value of the energy. Note that at σ = L

2 (and symmetrically at σ = 1− L
2 ,

we have a discontinuity in the form of minimizers.

Large-size domain: if L > 1
2 then we have

i) for σ < 1
8L the minimizers are as in case (C) above

u1 =
√

2σLχ[0, 1
2

√
2σL], u2 =

√
2σLχ[L− 1

2

√
2σL,L];

ii) for σ = 1
8L the four minimizers are the functions

u1 =
1
2
χ[0, 1

4
], u2 =

1
2
χ[L− 1

4
,L], u3 = χ[0, 1

8
], u4 = χ[L− 1

8
,L];

iii) for σ > 1
8L the minimizers are

u1 = χ[0,σL], u2 = χ[(1−σ)L,L].

In Fig. 7 we again picture minimizers at varying σ. Again, note the discontinuity
in the form of the minimizers at σ = 1

8L (and symmetrically at σ = 1− 1
8L).

σ=
1

8L
σ<

1

8L

1

8L
<σ<1−

1

8L
σ=1−

1

8L
σ>1−

1

8L

Figure 7: Evolution of the form of the minimizers in large domains

Remark 8. From the description of minimizers in the previous remark we easily derive
the shape of minimizers for the discrete problems, given by the corresponding recovery
sequences. A pictorial description for small-size domains is given in Fig. 1.

5 Boundary effects in periodic minimization

In this section we analyze the effect of periodic boundary conditions on the volume-
constrained minimization. The overall behaviour in dependence of L and σ will be
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described by introducing an additional parameter τ , which quantifies the ‘defect of 1
n -

periodicity’ of the underlying domain [0, L], and computing a τ -depending Γ-limit. The
existence of the Γ-limit only up to subsequences depending on τ is not an uncommon
feature when studying fine effects of homogenization depending on boundary effects
(see e.g. [13] Section 1.3).

We define the set of the periodic interactions as

E#
n (L) = {{i, j} : i, j ∈ N ∩ (0, bLn2c] : |i− j| ∈ {1, bLn2c − 1, n, bLn2c − n}}.

For u ∈ An(L, kn) (as previously defined) we set

F#
n (u) =

1
n

∑
{i,j}∈E#n (L)

(ui − uj)2

(the dependences on L and kn are omitted).
We consider the sequence λn = bLn2c−nbLnc ∈ [0, n). Let τnm be a subsequence of

τn = λn
n converging to τ ∈ [0, 1]; we compute the Γ-limit for the corresponding sequence

{F#
nm}, again denoted by {F#

n }.

Remark 9. We denote by τ(L) the set of the limits of converging subsequences of
{τn}. If L = p

q , p, q ∈ N co-primes, then τ(L) = {kq : k ∈ N, k ≤ q}. Otherwise, if
L 6∈ Q then τ(L) = [0, 1]. Indeed, the difference τn−(Ln−bLnc) goes to 0 as n→ +∞,
and a theorem of Kronecker ensures that the sequence of the fractional parts of Ln is
dense in [0, 1] if L is not rational. Note that this implies that for any τ ∈ [0, 1] the set
of the values L > 0 such that τ ∈ τ(L) is dense in (0,+∞).

For x, y ∈ [0, 1] we define

φτ (x, y) = H1([0, 1] ∩ (U τx4Uy)) (41)

with Uy = [0, y] and U τx = [−τ, x− τ ] ∪ [1− τ, x+ 1− τ ] (see Fig. 8).

Theorem 10. Let τ be defined as above, and φτ the corresponding function in (41).
The sequence of functionals {F#

n } Γ-converges with respect to the weak-∗ convergence
in L∞(0, L) to the functional F#

τ : L∞(0, L)→ [0,+∞] given by

F#
τ (u) =


2H1({x ∈ (0, L) : 0 < u < 1}) + |Du|(0, L) + φτ (u(0+), u(L−))

if u ∈ BV (0, L), 0 ≤ u ≤ 1,
∫ L

0
u dx = Lσ

+∞ otherwise.
(42)
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x=τ
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2−( x+ y)

2
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−
y)
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2
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2
τ−

( y
−
x)

Figure 8: Pictorial description and values of φτ

L0

1

T τ (u)

τ=1/6

u (0+ )

u (L−) τ

Figure 9: Description of Tτ (u)

Remark 11 (Interpretation in terms of perimeters). Given u ∈ BV ((0, L); [0, 1]) and
τ ∈ [0, 1], we define the set Tτ (u) ⊂ R2 as

Tτ (u) =
⋃

n1,n2∈Z

(
V (u) + (n1L, n1(1− τ) + n2)

)
, (43)

where V (u) = {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤ u(x)} is the subgraph of u (see Fig. 9).
Note that the value of the 1-perimeter of Tτ (u) in a periodicity cell equals F#

τ (u); i.e.,

Per1(Tτ (u); (0, L]× (0, 1]) = 2H1({x ∈ (0, L) : 0 < u < 1})
+|Du|(0, L) + φτ (u(0+), u(L−)).

The value of φτ (u(0+), u(L−)) is the measure of the part of the graph on the boundary
of the periodicity cell highlighted in Fig. 9.
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Remark 12 (Properties of φτ ). If τ = 0, then φ0(x, y) = |x − y|. Since φτ (x, y) =
φ1−τ (y, x), we can reduce to consider the case τ ≤ 1

2 . The following monotonicity
property of φτ will be useful in the computation of the minima of the functional F#:

φτ (x, y) ≤ φτ (y, x) if x ≥ y for τ ≤ 1
2
. (44)

Moreover, note that

φτ (s, s) =


2s if s ≤ min{τ, 1− τ}
2 min{τ, 1− τ} if min{τ, 1− τ} ≤ s ≤ max{τ, 1− τ}
2(1− s) if max{τ, 1− τ} ≤ s,

hence for the constant function u = σ we get F#
τ (u) = 2 min{τ, 1− τ, σ, 1− σ}.

Proof of the lower bound. Let {un} be such that un ∈ An(L, kn) and F#
n (un) ≤ c <

+∞. Since {un} is equibounded in L∞(0, L) we can assume that (up to subsequences)
un

∗
⇀ u in L∞(0, L). Following the proof of Proposition 4, we denote by αjn the integral

mean of un in Ijn, where Ijn = ( j−1
n , jn ] for j < bLnc and I

bLnc
n = ( bLncn , Ln]. Firstly, we

define ǔn in each Ijn with j > 1 by setting

ǔn =

{
1 in ( j−1

n , j−1
n + αjn

n ]
0 in ( j−1

n + αjn
n ,

j
n ]

(45)

if 0 < αjn < 1, and ǔn = un otherwise. Note that this part of the construction the same
as the one in definition (20). Now, we define ǔn in I1

n in order to minimize the n-range
jumps in this interval. To this end, we have to set, whenever possible, (ǔn)i = 1 if i
belongs to the set I1 of the indices such that (ǔn)i+n = (ǔn)i+bLn2c−n = 1 and (ǔn)i = 0
if i belongs to the set I0 of the indices such that (ǔn)i+n = (ǔn)i+bLn2c−n = 0. Note
that, by construction, I1 has one of the three following forms: Z∩ (0, i′] with i′ ≤ nτn,
Z ∩ (nτn, i′′] with nτn < i′′ ≤ n or Z ∩ ((0, i′] ∪ (nτn, i′′]). Similarly, the set I0 can
be written as the union of at most two “intervals” Z ∩ (j′, nτn] and Z ∩ (j′′, n]. We
define ǔn in I1

n by considering three cases. If nα1
n ≤ #I1, we set (ǔn)i = 1 for the

first nα1
n indices i in I1, and 0 otherwise. If #I1 < nα1

n ≤ n − #I0, then we define
(ǔn)i = 1 for any i ∈ I1 and for the first nα1

n −#I1 points in the complementary set
of I1 ∪ I0, and 0 otherwise. Finally, if n −#I0 < nα1

n, we define (ǔn)i = 1 for any i
in the complementary set of I0 and in the first nα1

n − (n − #I0) points of I0, and 0
otherwise. The function ǔn belongs to An(L, kn), and, following the idea of the proof
of the estimate (21), from the construction of ǔn we deduce that

F#
n (un) ≥ F#

n (ǔn)− c

n
, (46)
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where c is independent on n.
As before, we now construct a set G̃n ⊂ R2 such that for η > 0 we have

F#
n (ǔn) ≥ En(G̃n;Qη),

where En is the functional defined in (19) and Qη = (η, L + η) × (η, 1 + η). Denoting
by ǔ#

n the periodic extension to R of ǔn, we set

χGn = ǔ#
n

(j − 1
n

+
k

n2

)
in Qk,jn =

(j − 1
n

,
j

n

]
×
(k − 1

n
,
k

n

]
with j = 1, . . . , bLnc and k = 1, . . . , n. We set

G̃n =
⋃

n1,n2∈Z

(
Gn +

(
n1
bLnc
n

, n1(1− τn) + n2

))
.

The same argument as in the proof of Proposition 4 ensures that Gn converges in
measure to a set G with finite perimeter in Q0, which is in fact the subgraph V (u) of
the weak∗-limit u of un. Note that u turns out to be BV (0, L) with values in [0, 1], and∫ L

0 u dx = σL. Let η ∈ (0, 1) be such that

H1(∂∗Tτ (u) ∩ ∂Qη) = 0,

where Tτ is defined in (43); hence, by Proposition 2

lim inf
n→+∞

F#
n (un) ≥ lim inf

n→+∞
F#
n (ǔn) ≥ lim inf

n→+∞
En(G̃n;Qη)

≥ Per1(Tτ (u);Qη) = Per1(Tτ (u); (0, 1]× (0, L])

as claimed.

Proof of the upper bound. We can use the same recovery sequence as in the proof of the
upper bound in Theorem 6. Indeed, the approximation used in the proof of Proposition
5 is compatible with the addition of the boundary term φτ , which is continuous along
the sequences constructed therein. Moreover, the additional interactions taken into
account in F#

n asymptotically give the term with φτ .

5.1 Analysis of minimum problems

We now briefly describe the behaviour of minimum problems for F#
τ in dependence

of τ , σ and L. In order to understand the behaviour of minimizers, it is convenient
to refer to the two-dimensional interpretation of the energies, where the effect of the
mismatch in periodicity can be seen as the necessity to consider the extension of subsets
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on (0, L)× (0, 1) by periodicity on the Bravais lattice generated by (L, 1− τ) and (0, 1),
as in the definition of Tτ above. Note that this extension has no significant energetic
effect for sets as the ones in Fig. 7, but it might for sets as in Fig. 6, in particular for
rectangles corresponding to constant u. This will lead to a more complex typology of
minimizers.

We first note that in order to compute minimum values, we can always reduce to
piecewise-constant functions, as in the previous analysis of minimum values of FL,σ.
Note moreover that, setting ũ(x) = u(L− x), we have

F#
τ (u) = F#

τ (1− ũ).

Hence, we may limit the study to the case σ ≤ 1
2 . Recalling that Fτ (u) = F1−τ (ũ) (see

Remark 12) we can also assume τ ≤ 1
2 .

We start by showing that we can assume u monotone non-increasing. Indeed,
let u be a piecewise-constant function in [0, L] and denote by ud the non-increasing
rearrangement of u. Let zm = min{z : u(z) = m = minu} and zM = min{z : u(z) =
M = maxu}. If zm ≥ zM , then

F#
τ (u)− F#

τ (ud) ≥ u(L)− u(0) + φτ (u(0), u(L))− (m−M + φτ (M,m)).

Since for τ ≤ 1
2 the function y − x+ φτ (x, y) turns out to be non-increasing along any

direction (h,−k) with h, k ≥ 0, we deduce that

u(L)− u(0) + φτ (u(0), u(L)) ≥ m−M + φτ (M,m)

showing that F#
τ (u) ≥ F#

τ (ud). If zm < zM , the conclusion follows by recalling (44)
and noting that for τ ≤ 1

2 the function x − y + φτ (x, y) is non-increasing along any
direction (−h, k) with h, k ≥ 0. Indeed

F#
τ (u)− F#

τ (ud) ≥ u(0)− u(L) + φτ (u(0), u(L))− (m−M + φτ (M,m)
≥ u(0)− u(L) + φτ (u(0), u(L))− (m−M + φτ (m,M)) ≥ 0.

Hence, we may assume that u has the form u(0)χ(0,y) + u(L)χ(y,L) with u(0) ≥ u(L)
(and with the integral constraint u(0)y + u(L)(L− y) = σ). If u(0) < 1 and 0 < u(L),
then the monotonicity of x− y + φτ (x, y) ensures that

F#
τ (u) ≥ F#

τ (uσ)

where uσ is the constant function with value σ. Moreover, F#
τ (u) = F#

τ (uσ) if and only
if τ ≤ σ and u(0) − u(L) ≤ τ. Concluding, we again end up with four cases, pictured
in Fig. 10. In order to take into account all cases with a common notation, we set

τ∗ = min{τ, 1− τ}, τ∗ = max{τ, 1− τ}.
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Figure 10: Description of minimum problems at given τ ∈ (0, 1/2)

A) If (L, σ) satisfies one of the following conditions

L ≤ τ∗ and L ≤ σ ≤ 1− L

τ∗ ≤ L ≤ τ∗ and
(L+ τ∗)2

4L
≤ σ ≤ 1− (L+ τ∗)2

4L
,

then a minimizer is umin = σ, with energy F#
τ (umin) = 2L + 2 min{σ, 1 − σ, τ∗}. Note

that if τ = 0 the conditions for (L, σ) are described by L ≤ 1 and 1
4L ≤ σ ≤ 1 − 1

4L ,
similarly to the situation pictured in Fig. 5. The minimizer is unique only if σ < τ∗ or
σ > τ∗ (see Remark 13);

B) if L ≥ τ∗ and
1

4L
≤ σ ≤ 1− 1

4L

then a minimizer is the characteristic function umin = χ[0,σL]. The energy is F#
τ (umin) =

2. Note that all other minimizers are the translations of umin;
C) otherwise, if σ ≤ 1

2 , the minimum is obtained by minimizing on functions of the
form u = σL

y χ[0,y]. In this case, F#
τ (umin) = 4

√
σL, and again all other minimizers are

obtained by translation;
D) finally, in the remaining cases, the minimum is obtained by minimizing on func-

tions of the form u = 1 − (1−σ)L
y χ[0,σy]. In this case, F#

τ (umin) = 4
√

(1− σ)L, and
again all other minimizers are obtained by translation.

Remark 13 (size effect in the periodic case). We limit our description to σ ≤ 1/2,
and we consider τ∗ ∈ (0, 1

2), analyzing separately the limit cases τ∗ = 0 and τ∗ = 1
2 .

Small-size domain: if L < τ∗ we have
i) for σ < L the minimizers are in the case (C) above

√
σLχ[s,

√
σL+s] with s ≤ L−

√
σL; (47)
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ii) for σ = L the expressions in (47) define the constant function u = L, which
is the only minimizer of the energy. Note that the same holds, if σ ≥ 1

2 , in the case
σ = 1− L;

iii) for L < σ < τ∗ the minimizer is the constant u = σ;
iv) for σ ≥ τ∗ the minimizers are all monotone non-increasing u satisfying the

integral constraint and the boundary conditions u(0)− u(L) ≤ τ∗.

σ=Lσ<L L<σ<τ σ=τ τ<σ<1−τ σ=1−τ 1−τ<σ<1−L σ=1−L σ>1−L

Figure 11: Minimizers of the energy with varying σ for small-size domains

Note that at σ = τ∗, we have a discontinuity in the form of minimizers. The
evolution of the form of the minimizers if L < τ∗ is pictured in Fig. 11. For the other
cases the form of minimizers can be similarly described and we refer to the figures in
Section 4.2 for the necessary changes.

Intermediate-size domain: if τ∗ < L < τ∗ then we have
i) for σ < (L+τ∗)2

4L the minimizers are the functions in (47);

ii) for σ = (L+τ∗)2

4L the minimizers are the functions of the form

L+ τ∗
2

χ[s,L+τ∗
2

+s] if s ≤ L− τ∗
2

the constant u = σ and all monotone non-increasing u satisfying the integral constraint
and the boundary conditions u(0)− u(L) ≤ τ∗;

iii) for (L+τ∗)2

4L < σ the minimizers are all monotone non-increasing u satisfying the
integral constraint and the boundary conditions u(0)− u(L) ≤ τ∗.

The evolution of the form of the minimizers is similar to the situation described in
Fig. 6 for the non-periodic case, with a different critical threshold: here, the disconti-
nuity appears at σ = (L+τ∗)2

4L and corresponds to a critical value L+τ∗
2 .

Large-size domain: if L > τ∗ then we have

25



i) for σ < 1
4L the minimizers are the functions in (47);

ii) for σ = 1
4L the minimizers are the functions in (47) which in this case become

1
2
χ[s, 1

2
+s] if s ≤ L− 1

2
and

1
2
χ[0, 1

2
−s]∪[ 1

2
,L] if s > L− 1

2
;

and the characteristic functions of the form χ[s,s+ 1
4

] and χ[0, 1
4
−s]∪[s,L];

iii) for 1
4L < σ the minimizers are the characteristic functions of the form χ[s,s+ 1

4
]

and χ[0, 1
4
−s]∪[s,L].

Again, the evolution of the form of the minimizers can be described as in Fig. 7 for
the non-periodic case, with a discontinuity at σ = 1

4L .

Note that if τ∗ = 0 or τ∗ = 1
2 , then we only have two regimes (for domains with

L < 1 and with L > 1) as in the non-periodic case.

Remark 14. Note that 0 ∈ τ(L) for any L > 0 (see Remark 9), so that for all σ

inf
τ∈τ(L)

min{F#
τ (u)} = min{F#

0 (u)}

where the minimum is attained in τ = 0. Moreover, the minimum value of the functional
F#
τ is independent of τ , in the following cases:

L ≥ 1; L < 1 and L ≤ min{σ, 1− σ}; L < 1 and
L

4
≥ min{σ, 1− σ},

when it equals the minimum value of the functional F#
0 .
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