We consider the nonsupersymmetric "magic" theories based on the split quaternion and the split complex division algebras. We show that these theories arise as "Ehlers" SL(2;R) and SL(3;R) truncations of the maximal supergravity theory, exploiting tech- niques related to the very-extended Kac{Moody algebras. We also generalize the proce- dure to other SL(n;R) truncations, resulting in additional classes of nonsupersymmetric theories, as well as to truncations of nonmaximal theories. Finally, we discuss duality orbits of extremal black hole solutions in some of these nonsupersymmetric theories.

Marrani, A., Pradisi, G., Riccioni, F., Romano, L. (2017). Nonsupersymmetric magic theories and Ehlers truncations. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 32(19n20), 1750120 [10.1142/S0217751X17501202].

Nonsupersymmetric magic theories and Ehlers truncations

Pradisi, Gianfranco
;
2017-07-12

Abstract

We consider the nonsupersymmetric "magic" theories based on the split quaternion and the split complex division algebras. We show that these theories arise as "Ehlers" SL(2;R) and SL(3;R) truncations of the maximal supergravity theory, exploiting tech- niques related to the very-extended Kac{Moody algebras. We also generalize the proce- dure to other SL(n;R) truncations, resulting in additional classes of nonsupersymmetric theories, as well as to truncations of nonmaximal theories. Finally, we discuss duality orbits of extremal black hole solutions in some of these nonsupersymmetric theories.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
English
Supergravity; Kac{Moody algebras; black holes.
Marrani, A., Pradisi, G., Riccioni, F., Romano, L. (2017). Nonsupersymmetric magic theories and Ehlers truncations. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 32(19n20), 1750120 [10.1142/S0217751X17501202].
Marrani, A; Pradisi, G; Riccioni, F; Romano, L
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Ehlers.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 609.24 kB
Formato Adobe PDF
609.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/209042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact