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We consider the nonsupersymmetric “magic” theories based on the split quaternion
and the split complex division algebras. We show that these theories arise as “Ehlers”
SL(2,R) and SL(3,R) truncations of the maximal supergravity theory, exploiting tech-

niques related to the very-extended Kac–Moody algebras. We also generalize the proce-

dure to other SL(n,R) truncations, resulting in additional classes of nonsupersymmetric
theories, as well as to truncations of nonmaximal theories. Finally, we discuss duality

orbits of extremal black hole solutions in some of these nonsupersymmetric theories.
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1. Introduction

Supergravity theories possess hidden global symmetries that turn out to be much

larger than those expected from the geometry of the compactification space. For

instance, maximal supergravities in D ≥ 3 exhibit an E11−D(11−D)
1,2 global sym-

metry, to be compared with the GL(11−D,R) group related to the isometries of the

(11−D)-dimensional torus. Extra symmetries, of course, are not necessarily symme-

tries of the full Lagrangian, but they leave the field equations invariant. In relation

to string theory, it is conjectured3 that the full nonperturbative string models are

invariant only under discrete subgroups of the global symmetries of the correspond-

ing low-energy supergravity theories. Such discrete symmetries are usually termed

U-dualities, and they play a crucial role in understanding the deep relations between

different perturbative string theories, that are mapped under their action one to

the other in diverse regions of the moduli space (for a review, see e.g. Refs. 4 and

5). Hidden global symmetries are also useful in determining all possible massive

deformations of a given ungauged supergravity. Indeed, the embedding tensor6–10

singles out the allowed gauge groups inside the global symmetry group, providing

a covariant description of all possible gaugings of a given supergravity theory.

The maximal supergravity theories in any dimension are related to the very-

extended Kac–Moody algebra E+++
8(8) (also called E11),11 whose Dynkin diagram is

reported in Fig. 1. The maximal theory in dimension D corresponds to the decom-

position of the algebra in which the “gravity line” is identified with the AD−1
subalgebra containing node 1, while the part of the diagram that is not connected

to the AD−1 subalgebra corresponds to the internal symmetry. From the diagram,

one then sees that the highest dimension to which the theory can be uplifted is 11,

while there are two different theories in ten dimensions, namely the IIA theory (with

A9 given by nodes from 1 to 9) and the IIB theory (with A9 given by nodes from

1 to 8 plus node 11).12 Decomposing the adjoint representation of E+++
8(8) in any

dimension, one obtains all the p-forms of the theory. This not only includes all the

propagating fields and their duals, but also (D−1)-forms and D-forms. The (D−1)-

forms are dual to the massive/gauge deformations, while the D-forms are related to

space-filling branes. In particular, in the IIA case, one obtains an eight-form which

is dual to the Romans mass,13 and generalizing this analysis to any dimension, one

discovers14,15 that the (D− 1)-forms predicted in D dimensions by E+++
8(8) precisely

correspond to the representations of the embedding tensor derived in Refs. 6–10. All

the p-forms with the corresponding representations for the maximal supergravities

are reported in Table 1 (taken from Refs. 14 and 15).

1 765432 108 9

11

Fig. 1. The E+++
8(8)

Dynkin diagram.
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Table 2. The doubly split magic square.26

R Cs Hs Os

R SO(3) SL(3,R) Sp(6,R) F4(4)

Cs SL(3,R) SL(3,R)× SL(3,R) SL(6,R) E6(6)

Hs Sp(6,R) SL(6,R) SO(6, 6) E7(7)

Os F4(4) E6(6) E7(7) E8(8)

The same construction can be extended to 1/2-maximal and symmetric 1/4-

maximal supergravities where, precisely as in the maximal theory, the Kac–

Moody algebra is G+++
3 , G3 being the global symmetry of the three-dimensional

theory.16–18 In particular, the 1/2-maximal theories correspond to the Kac–Moody

algebra SO(8, n)+++, while among the 1/4-maximal theories, one can consider the

magic ones19–21 (for a review, see Ref. 22), corresponding to the algebras F+++
4(4) ,

E+++
6(2) , E+++

7(−5) and E+++
8(−24).

17 With the exception of the F+++
4(4) case, the real form

of the symmetry group of these theories is nonsplit, a fact taken into account by

considering the Tits–Satake diagram of G+++
3 , which identifies the real form of the

global symmetry in any dimension, as well as the highest dimension to which the

theory can be uplifted.17

As shown in Refs. 19–22, the exceptionalN = 2 Maxwell–Einstein supergravities

in D = 4, 5 are related to cubic Jordan algebras. In particular, they are based on

simple Euclidean Jordan algebras JA
3 generated by 3 × 3 Hermitian matrices over

the four normed division algebras A = R,C,H,O. They can be associated to the

single split version of the famous “magic square” of Freudenthal, Rozenfeld and

Tits.23–25 For this reason, they are called “magic.” The complex and quaternionic

theories are consistent N = 2 truncations of the maximal N = 8 supergravity,

while the N = 2 octonionic theory is not, as manifested by the fact that in four

dimensions, it is based on the minimally noncompact real form E7(−25), completely

different from the maximally noncompact (split) real form E7(7).

An analogous analysis can be performed by replacing the division algebras with

their split versions As and the magic square with the doubly split magic square26

(also cf. Ref. 27) given in Table 2. While the theory based over the split octonions

Os is the maximal supergravity theory, the theories based on Cs and Hs are non-

supersymmetric and their field content is a gravitational model not interpretable

as the bosonic sector of a locally supersymmetric theory. Exactly, as for all the

supersymmetric theories discussed above, they correspond to the very-extended

Kac–Moody algebras E+++
6(6) and E+++

7(7) . These algebras were originally considered

in Ref. 28 and, as emerging from their diagram, they can be uplifted at most to

eight and ten dimensions, respectively. The spectrum of forms of the E+++
6(6) theory

in eight dimensions, as well as one of the E+++
7(7) theories in nine and ten dimensions,

was listed in Ref. 29. In the same paper, it was also shown that these Kac–Moody

algebras are consistent truncations of E+++
8(8) .
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It is the main purpose of this paper to further investigate these truncations.

In particular, we refer to the analysis of Ref. 30, where it is observed that in

any supersymmetric theory with scalars parametrizing a symmetric manifold, the

global symmetry group G3 in three dimensions can be decomposed in D dimensions

factorizing the Ehlers group SL(D − 2,R) as

G3 ⊃ GD × SL(D − 2,R) . (1.1)

The group on the right-hand side of (1.1) was dubbed “super-Ehlers group” in

Ref. 30. In particular, for the maximal theories, one obtains the so-called Cremmer–

Julia sequence (cf. e.g. Sec. 1 of Ref. 31)

E8(8) ⊃ E11−D(11−D) × SL(D − 2,R) . (1.2)

Within the sequence in Eq. (1.2), the E7(7) and E6(6) groups that appear in the

fourth column of the doubly split magic square in Table 2 occur as U-duality groups

of the maximal supergravity theory in D = 4 and D = 5, respectively. Note that the

same groups also occur in the fourth row of the magic square; thus, as mentioned

before, the theories based on Hs and Cs, that can be obtained by the very-extended

Kac–Moody algebras E+++
7(7) and E+++

6(6) , have in three dimensions precisely the

symmetry of the maximal theory in four and five dimensions, respectively. The

truncation of the E+++
8(8) theory that leads to the E+++

7(7) and E+++
6(6) ones is therefore

precisely of Ehlers type. Thus, it is natural to compare the p-form spectra of the

E+++
7(7) and E+++

6(6) algebras in any dimension with those obtained by truncating

in any dimensions the representations of the maximal theories (given in Table 1)

to singlets of SL(2,R) and SL(3,R). We obtain a perfect match, with the only

exceptions of the multiplicity of the lower-dimensional representations of the D-

forms in D dimensions and of the two-forms in three dimensions, which are typically

less than the result of the truncation. We use the software SimpLie15 to determine

the spectrum of the theories in any dimension.

Our procedure can be extended to Ehlers SL(n,R) truncations with n > 3,

giving again theories that in three dimensions have the symmetry of the maximal

theory in n+ 2 dimensions. As a consequence, their spectra are given by the Kac–

Moody algebras SO(5, 5)+++ (n = 4), SL(5,R)+++ (n = 5) and (SL(3,R) ×
SL(2,R))+++ (n = 6). While the first two were discussed in Ref. 29, the third is

the extension of a group which is not simple. The general analysis of Kac–Moody

algebras of this type was first considered in Ref. 32. We compare the spectrum of

these theories with the Ehlers truncation of the spectrum of the maximal theory

in any dimensions, obtaining the same match as for the n = 2 and n = 3 cases. In

particular, one recovers the “split magic triangle” of Ref. 33.

An allowed realization of these models within perturbative string theory is pos-

sible only if the Ehlers SL(n,R) truncation can be embedded in the perturbative

symmetry of the maximal theory, i.e. the one that does not act on the string dilaton.

We show how this can be directly extracted by an analysis of the Dynkin diagram

1750120-5
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of the very-extended algebra of the truncated theory. The fact that such Dynkin

diagrams encode information about T-duality transformations was originally shown

in Ref. 29.

The truncation procedure can also be applied in the same fashion to 1/2-

maximal and to 1/4-maximal theories. In Ref. 34, a large class of symmetric G/H

nonlinear σ-models has been analyzed in D = 3 and lifted to D = 4. The cosets are

noncompact Riemannian symmetric spaces, and some of them correspond to the

bosonic sectors of supergravities with sixteen or eight supersymmetries. They can

be extended to the possible allowed higher dimensions using again the technique

based on the related very-extended Kac–Moody algebras.

For the theories based on Hs and Cs, one can use the connection with Jordan

algebras to determine the orbits of extremal black hole solutions in four and five

dimensions. In Ref. 35, the analysis of black hole orbits of the maximal theory was

performed in terms of bound states of the weights of the representations to which the

black hole charges belong. By repeating the same analysis for the representations

of the black hole charges of the E+++
6(6) and E+++

7(7) theories, one obtains not only

a perfect match with the Jordan algebra investigation, but also an extension of it

to higher dimensions. Following Ref. 36, where it was shown how the results of

Ref. 35 can be extended to nonsplit groups, one can also determine the orbits of

the truncations of the 1/2-maximal and the 1/4-maximal theories.

The paper is organized as follows. In Sec. 2, we analyze the spectrum of the

theories based on the very-extended Kac–Moody algebras E+++
7(7) and E+++

6(6) . We

prove that they are consistent truncations of maximal theories (based on E+++
8(8) )

obtained by modding out the corresponding Ehlers group. We also discuss the em-

beddings within string theory. In Sec. 3, we extend the class of theories by observing

that the duality group in D = 3 exactly coincides with that of the Ehlers trunca-

tion of the maximal theory in dimension D.a In the explained sense, our procedure

gives an alternative definition of the very-extended duality algebra. When con-

sidering nonsimple duality algebras, our results coincide with those obtained using

the method proposed in Ref. 32. In Sec. 4, we extend the construction to a large class

of theories with less supersymmetry, like the ones discussed in Ref. 34, and to the

infinite series of orthogonal very-extended algebras, related also to the dimensional

reduction of the heterotic string. In Sec. 5, the analysis of Ref. 36 is extended to

the black hole orbits of the models presented in this paper. As obtained in Ref. 36,

the absence of orbit splitting can be traced back to the lack of short weights in the

corresponding representation space. Finally, in Sec. 6, we discuss the embedding

within string theory, and we present our conclusions and discussions about possible

future directions.

aAs mentioned, at least where exceptional Lie algebras are involved, this is a consequence of the
symmetry of the doubly split magic square.26
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2. Nonsupersymmetric Theories Based on Cs and Hs

The N = 2 “magic” Maxwell–Einstein supergravity theories discovered in

Refs. 19–21 are based on the simple Euclidean Jordan algebras JA
3 generated by

3 × 3 Hermitian matrices over the four normed division algebras A = R, C, H, O.

The symmetry of the theories in dimension from three to five is connected to the

single split form of the famous “magic square” of Freudenthal, Rozenfeld and Tits

(cf. Refs. 23–25, as well as the recent review on magic squares of order 3 and their

relevance in (super)gravity theories27). In particular, in three dimensions, these

theories have global symmetry F4(4), E6(2), E7(−5) and E8(−24), respectively. The

relation between these theories and the Jordan algebras JA
3 was used in Ref. 37

(see also Ref. 38) to classify the orbits of all the extremal black hole solutions in

various dimensions. An analogous magic square exists also for the split division

algebras R, Cs, Hs, Os:26 with complex parameters, the corresponding groups are

the same as those resulting from the division algebras, but they enter now in the

split real form. The split-octonion case corresponds to the E8(8) symmetry in three

dimensions and therefore the algebra is that associated to maximal supergravity.

In this section, we want to consider the remaining theories based on Cs and Hs; in

three dimensions, they have a (electric–magnetic) dualityb symmetry groups E6(6)

and E7(7), respectively.

In Ref. 17, it was shown that the bosonic spectrum of the N = 2 magic theories

can be derived from the Kac–Moody algebras G+++ where G is the symmetry of the

three-dimensional theory. The real form of the symmetry group in any dimension

is identified by the corresponding Tits–Satake diagram, and the symmetry of the

theory in a given dimension is obtained by the deletion of the corresponding node

precisely as in the maximal case. The deleted node is in general associated to the

global scale symmetry and therefore it must correspond to a noncompact Cartan

generator, and while for split real forms, one can always take the Cartan generators

to be all noncompact, for other real forms, this is not the case and the Tits–

Satake diagram precisely identifies which Cartan generators are compact and which

are noncompact. For the Kac–Moody algebras associated to the N = 2 magic

theories, the fact that the nodes of the Tits–Satake diagrams corresponding to

compact Cartan generators cannot be deleted explains from this perspective why

these theories can only be uplifted at most to six dimensions.

One can consider as an example the theory based on O, corresponding to

the Kac–Moody algebra E+++
8(−24), whose Tits–Satake diagram is drawn in Fig. 2.

Following the standard convention of Tits–Satake diagrams, the black nodes in

Fig. 2 are associated to compact Cartan generators. By deleting node 3, one obtains

the Tits–Satake diagram of E8(−24), which is the global symmetry of the three-

dimensional theory, and by further deleting nodes 4, 5 and 6, one obtains the

bHere, duality is referred to as the analogue in a nonsupersymmetric context of the “continuous”

symmetries of Refs. 1 and 2, whose discrete versions in the supersymmetric case are the U-dualities
of nonperturbative string theory introduced by Hull and Townsend.3
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1 765432 108 9

11

Fig. 2. The E+++
8(−24)

Tits–Satake diagram.

Tits–Satake diagrams of E7(−25), E6(−26) and SO(1, 9), which are the global sym-

metries in four, five and six dimensions, respectively. Node 7, corresponding to a

compact Cartan generator, cannot be deleted and the theory cannot be uplifted

to seven dimensions. The spectrum of the theory, in the dimensions in which it

exists, can be read from Table 1, keeping in mind that the reality properties of

the various representations differ from those of the maximal theory because the

symmetry groups are in different real forms.17 The same analysis can be performed

for the theories based on H, C and R, whose Tits–Satake very-extended diagrams

can be found in Ref. 17. It should again be stressed that in all cases, the Kac–

Moody algebra allows to determine the full spectrum of the theory, including the

(D − 1)-forms and the D-forms.

By analogy with the N = 2 case, it is then natural to associate to the theories

based on Cs and Hs the very-extended Kac–Moody algebras E+++
6(6) and E+++

7(7) ;28,29

in this case, the algebra is split and therefore the Tits–Satake diagram coincides

with the Dynkin diagram, with all noncompact Cartan generators. From the Kac–

Moody algebra, one then determines the spectrum of all forms in any dimension.

The highest dimension to which these theories can be uplifted is 10 in the case of

E+++
7(7) and 8 in the case of E+++

6(6) .

We start by considering the Hs-based E+++
7(7) theory, whose Dynkin diagram is

drawn in Fig. 3. From the diagram, it is evident that the theory can be uplifted

to D = 10.29 Indeed, by deleting node 10, one obtains a symmetry SL(10,R) asso-

ciated to a ten-dimensional theory. From the point of view of the Dynkin diagram,

the dimensional reduction corresponds to further deleting the nodes starting from

node 9. The D-dimensional theory corresponds to an SL(D,R) symmetry in the

diagram involving nodes from 1 to D− 1, and the nodes that are not connected to

any of the SL(D,R) nodes form the global (duality) symmetry group. As already

mentioned, the deleted node gives an extra scaling symmetry so that the symmetry

1 765432 8 9

10

Fig. 3. The E+++
7(7)

Dynkin diagram.
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Table 3. All the p-forms of the E+++
7(7)

theory in any dimension.

Dim Symmetry p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

10 — 1

9 R+ 1 1 1 1 1

8A GL(2,R) 2 1 2 1 2
3

2× 2
3

1 2× 1

8B SL(3,R) 3 3̄ 8
15

3

3 3̄ 8 8 15

7 GL(3,R) 3 3̄ 6̄ 6̄

1 1 1 3 2× 3

6 SL(4,R)× SL(2,R) (4,2) (6,1) (4̄,2)

(64,1)

(15,1) (20,2) (10,3)

(1,3) (4,2) (6,3)

2× (6,1)

105 384

5 SL(6,R) 15 15 35 105

21 15

2079

4 SO(6, 6) 32 66 352 462

66

1539 40755

3 E7(7) 133 1539

1 1

associated to the gravity sector is actually GL(D,R), and in the case in which two

nodes have to be canceled, there is an extra R+ global symmetry corresponding

to the fact that there is an additional internal Cartan generator. Apart from the

theories that one obtains from dimensional reduction of the ten-dimensional theory,

there is also an eight-dimensional theory whose corresponding SL(8,R) is formed

by the nodes from 1 to 6 and node 10. We call this theory 8B, whereas we name

the other eight-dimensional theory 8A, in analogy with the maximal case.

In Table 3, we list all the p-forms of the theory in any dimension. These (together

with gravity and the scalars, that always parametrize a symmetric manifold G/H,

where G is the global symmetry and H is the maximal compact subgroup of G) give

the full bosonic spectrum of the theory. In three dimensions, the theory describes 70

scalars, which is the number of bosonic degrees of freedom in any dimension. In ten

dimensions, the theory contains only a self-dual four-form.29 By looking at Table 1,

one can see that such spectrum arises by truncating the spectrum on the IIB theory
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to only singlets of SL(2,R). This fact actually generalizes to any dimension: the

symmetry of the maximal theory GD in D dimensions decomposes as SL(2,R) ×
G

(2)
D , where G

(2)
D is the D-dimensional symmetry of the E+++

7(7) theory. Moreover,

the spectrum of the E+++
7(7) is obtained by decomposing all representations of the

maximal theory as representations of SL(2,R)×G(2)
D and keeping only those that

are singlets of SL(2,R). This truncation is obviously guaranteed to be consistent.

The fact that the E+++
7(7) theory is an SL(2,R) truncation of the E+++

8(8) theory

actually also explains the occurrence of two different theories (8A and 8B) in

eight dimensions. Indeed, the maximal theory in eight dimensions has symmetry

SL(3,R) × SL(2,R), and thus there are two different ways of factoring out an

SL(2,R). In the first case, taking the SL(2,R) inside SL(3,R), one ends up with

the theory denoted 8A in the table, which has symmetry GL(2,R) and arises as the

torus T 2-reduction of the ten-dimensional theory. On the other hand, factoring out

the other SL(2,R) gives rise to the theory with global symmetry SL(3,R) denoted

8B in the table, which cannot be obtained by dimensional reduction.

We can consider in detail how the truncation works in any dimensions by looking

at the representations of the maximal theory that are listed in Table 1. In the case

of the “10B-” and nine-dimensional case, the fields in Table 3 simply correspond

to the SL(2,R) singlets in Table 1. In eight dimensions, as mentioned above, the

8A theory corresponds to considering the SL(2,R) inside SL(3,R). The 3 and the

3̄ both decompose as 2 + 1, while the 8 decomposes as 3 + 2 + 2 + 1 and the 6

decomposes as 3 + 2 + 1. Taking only the singlets, this reproduces all the forms

up to p = 7 included in the 8A theory in Table 3. The eight-forms arise from the

singlets in the decompositions of the 15 and of the 3, which both have one SL(2,R)

singlet. As a result, one would expect eight-forms in the 3 and 1 of the remaining

SL(2,R) as Table 3 shows, but the singlet appears with multiplicity 2 instead of

3, as the decomposition would suggest. The same occurs for the 8B theory, which

corresponds to taking the singlets of the SL(2,R) which is not inside SL(3,R) in

the eight-dimensional maximal theory. From Table 1, one gets that the eight-forms

in the 3 should have multiplicity 2, while they occur with multiplicity 1 in Table 3.

The reader can check that the same phenomenon occurs in any dimension. All

the representations of Table 3 result from truncating the representations of Table 1

to the singlets of SL(2,R). Only for the D-forms in D dimensions and the two-forms

in three dimensions, the multiplicity of the lower-dimensional representations is in

general smaller than the multiplicity that results from the decomposition to the

singlets of SL(2,R). This can be understood by observing that if a given potential

has multiplicity n, it means that in the gauge algebra, there are actually n potentials

whose gauge transformations with respect to the various gauge parameters of the

theory are all different. Once all the fields and gauge parameters are truncated to

the singlets of SL(2,R), some of the gauge transformations above become identical

and the corresponding potentials are identified, with the effect of lowering at least

partially the multiplicity.
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654321 7

8

9

Fig. 4. The E+++
6(6)

Dynkin diagram.

Given that these theories arise in any dimension as a specific truncation of

the maximal (E+++
8(8) ) theory in which an SL(2,R) subgroup of the global symme-

try group is factored out, one can in principle hope to realize such truncation in

perturbative string theory in D dimensions only if this subgroup is part of the per-

turbative SO(10−D, 10−D) symmetry. The highest dimension in which this occurs

is D = 8, where the perturbative symmetry is the SL(2,R)×SL(2,R) subgroup of

the global symmetry group SL(3,R) × SL(2,R). In the IIA case, the “geometric”

SL(2,R), that is the one associated to the complex structure of the torus, is the

first SL(2,R), namely the one contained in SL(3,R). As a consequence, the 8A

theory obtained by factoring out this group could in principle be obtained from the

Type IIA theory via some kind of geometric orbifold of the two-torus T 2. On the

other hand, in the IIB case, it is the second SL(2,R) which is the “geometric” one.

Hence, the 8B theory that results from factoring out this group could in principle

be realized as a geometric orbifold of the Type IIB theory.

The fact that D = 8 is the highest dimension in which the Hs-based magic

nonsupersymmetric theory could be realized in perturbative string theory can also

be easily deduced from the E+++
7(7) Dynkin diagram in Fig. 3, as already discussed

in Ref. 29. The general rule is that for this to be possible, one must be able to

decompose the global symmetry in SO(m,m) for a given m; in the particular case of

the E+++
7(7) Dynkin diagram, this decomposition is achieved by the deletion of node 8.

The string dilaton corresponds to the Cartan generator associated to the simple root

α8, and the perturbative symmetry in D dimensions isc SO(8−D, 8−D)×SL(2,R),

where the second factor corresponds to the simple root α9.

We can repeat the previous analysis for the case of the magic nonsupersymmetric

theories based on Cs, where the symmetry in D = 3 is E6(6). In any dimension,

the bosonic sector of the theory can thus be obtained from the Kac–Moody algebra

E+++
6(6) ,28,29 whose Dynkin diagram is given in Fig. 4. From the diagram, one can

deduce the symmetry group in any dimension, together with the highest dimension

cThis hints the interpretation of SL(2,R) as Tri(Hs)/SO(Hs), where Tri(Hs) and SO(Hs), respec-
tively denote the triality symmetry and the norm-preserving symmetry of Hs.39
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Table 4. All the p-forms of the E+++
6(6)

theory in any dimension.

Dim Symmetry p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

8 SL(2,R) 2 3

7 GL(2,R) 1 2 2 1
3 3 4

1 2 2× 2

(3,2) (4, 2)

(2, 1) (2, 1) (3, 1) (2, 3) (2, 4)

6 (SL(2,R))2 × R+ (2, 2) (1, 1) 3× (2, 2)

(1, 2) (1, 2) (1, 3) (1, 2) (3, 1)

(2, 1) (1, 3)

(15, 3̄)

(8, 1) (6̄, 3) (3̄, 15)

5 (SL(3,R))2 (3, 3) (3̄, 3̄) (3, 3) 2× (3̄, 3̄)

(1,8) (3, 6̄) (6, 3̄)

(3̄,6)

70 280

4 SL(6,R) 20 35 280

70 189

3 E6(6) 78

5824

650 5824

1 650

78

to which the theory can be uplifted, D = 8 in this case. In Table 4, we give the full

spectrum of p-forms of the theory in any allowed dimension D, again including, as in

the quaternionic case, D− 1- and D-forms. The p-forms enter the bosonic sector of

the theory together with gravity and with the scalars that parametrize the manifold

G/H, being H, as usual, the maximal compact subgroup of the global symmetry

group G. In particular, in three dimensions, this gives a total of 42 scalars, which

is the number of degrees of freedom in any dimension.

Following the same analysis of the previous case, we observe that the eight-

dimensional theory results as a truncation of the maximal theory in which the

SL(3,R) part of the global symmetry is modded out. Once again, in any dimen-

sion, the global symmetry G
(3)
D arises in the decomposition G

(3)
D × SL(3,R) of the

symmetry of the maximal theory, and the full spectrum in dimension D is a consis-

tent truncation of the one of the maximal theory in dimension D, provided only the

singlets with respect to the SL(3,R) are kept. The unique exception to this general

rule, already mentioned for the quaternionic theories, occurs for lower-dimensional

representations of the D-forms in D dimensions and also of the two-forms in D = 3,

whose actual multiplicity is typically lower than the multiplicity resulting from the
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truncation. As an example, we can analyze the seven-dimensional case. By de-

composing the 70, the 45 and the 5 of SL(5,R) under the maximal subgroup

GL(2,R)×SL(3,R) and keeping only the SL(3,R)-singlets, one gets a 4 and three

2’s of SL(2,R), while the doublet in Table 4 only arises with multiplicity 2.

One can again determine the dimensions where an interpretation in terms of a

perturbative truncation of the ten-dimensional Type IIA or Type IIB string theory

could exist. For this, the requirement that G × SL(3,R) is contained in the T-

duality symmetry of the maximal theory should be fulfilled. The highest dimension

in which this occurs is D = 7. Again, this information can be extracted by looking

at the Dynkin diagram in Fig. 4. Indeed, an SO(m,m) symmetry only arises after

deleting both nodes 7 and 9, and the dilaton Cartan generator is indeed the sum of

the Cartan generator associated to the simple root α7 and of the one associated to

the simple root α9. In any dimension, the perturbative symmetry of the Cs-based

theory isd SO(7−D, 7−D)× R+.

To summarize, in this section, we have fully characterized the E+++
7(7) and E+++

6(6)

theories, associated, respectively to Hs and Cs, in terms of consistent SL(2,R) and

SL(3,R) truncations of the maximal (E+++
8(8) ) theory. In the next section, we will

show that this generalizes to further truncations.

3. Ehlers SL(n,R) Truncations of Maximal Supergravity

in any Dimension

In the previous section, we have shown that the magic nonsupersymmetric theories

based on Cs and Hs can be obtained in any dimensions as suitable truncations

of the maximal supergravities. In particular, the chain of Table 3 based on Hs is

obtained by modding out the symmetry SL(2,R), while the chain of Table 4 based

on Cs is obtained by modding out the symmetry SL(3,R). In three dimensions,

the modding gives rise to the symmetries E7(7) and E6(6) that coincides with the

symmetries of the maximal theory in four and five dimensions, respectively. The

symmetry of the four-dimensional theory based on Cs is SL(6,R), identical to the

symmetry of the five-dimensional theory based on Hs. Ultimately, one may trace

the previous relations back to the symmetry of the doubly split magic square.26

However, as shown in the previous section, the theories based on Hs and Cs are also

associated to the very-extended Kac–Moody algebras E+++
7(7) and E+++

6(6) . Moreover,

as explained before, the fact that these theories arise as truncations of the maximal

theory can actually be extended to the full spectrum of p-forms resulting from the

very-extended Kac–Moody algebras.

The aim of this section is to extend this analysis to further truncations. We

consider the truncation of the maximal theory obtained by modding out the U-

duality symmetry GD (in any dimension) with respect to the symmetry SL(n,R).

dThis hints the interpretation of R+ as Tri(Cs)/SO(Cs), where Tri(Cs) and SO(Cs), respectively
denote the triality symmetry and the norm-preserving symmetry of Cs.39

1750120-13

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
7.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

U
R

O
PE

A
N

 O
R

G
A

N
IZ

A
T

IO
N

 F
O

R
 N

U
C

L
E

A
R

 R
E

SE
A

R
C

H
 (

C
E

R
N

) 
on

 0
7/

19
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



July 17, 2017 11:21 IJMPA S0217751X17501202 page 14

A. Marrani et al.

It can be worked out by considering the embedding

GD ⊃ SL(n,R)×G(n)
D , (3.1)

where G
(n)
D is the residual symmetry of the truncated theory in D dimensions. The

resulting groups form the split magic triangle of Ref. 33 displayed in Table 5: in its

first column, the various SL(n,R)’s are reported, while in the remaining columns,

the resultingG
(n)
D ’s for eachGD are given. In particular, the second column gives the

various decompositions of the three-dimensional theory, the third column gives

the various decompositions of the four-dimensional theory, and so on. Obviously,

G
(1)
D = GD and the n = 2 and n = 3 decompositions are just the two sequences

discussed in Sec. 2.

For each n (or, equivalently, for each row in the table), the different entries

correspond to the groups that one obtains decomposing the Kac–Moody algebra

G
(n)+++
3 in various dimensions. The n = 2 and n = 3 cases correspond to the

theories we discussed in the previous section, while for n = 4 and n = 5, one

obtains the symmetry groups of the SO(5, 5)+++ and SL(5,R)+++ theories.e We

will show below that the spectrum of these theories can indeed be constructed as a

consistent truncation of the spectrum of the maximal theory, in which only singlets

of SL(4,R) and SL(5,R) are, respectively kept.

If one further extends this identification of the truncated theory with G
(n)+++
3

to higher values of n, one gets that the n = 6 case corresponds to the (SL(3,R)×
SL(2,R))+++ theory. In Ref. 32, a way of defining the Kac–Moody very-extended

algebras G+++ with G semi-simple, but not simple was derived, and a method

to obtain the spectrum of the theory by suitably decomposing the corresponding

Dynkin diagram was given. We will show that, apart from subtleties concerning

the multiplicities of lower-dimensional representations of the higher-rank forms,

the method of Ref. 32 applied to (SL(3,R) × SL(2,R))+++ gives results that are

in agreement with the n = 6 truncation. Going beyond n = 6, we should point out

that there are two possible decompositions for n = 8, which we call n = 8A and

n = 8B. The cases with n ≥ 7 (with the exception of the n = 8B case) correspond to

very-extended algebras that are not semi-simple. One can easily note that Table 5 is

symmetric, and in particular G
(n)
D is the same as G

(D−2)
n+2 . In other words, the group

that one obtains by modding the D-dimensional duality group by SL(n,R) is the

same as the one coming out by modding the duality group in n+ 2 dimensions by

SL(D− 2,R). This symmetry was first explained in Ref. 41 exploiting the relation

discovered in Ref. 42 between exceptional groups and del Pezzo surfaces.

For the n = 4 truncation, one obtains the SO(5, 5)+++ theory, whose Dynkin

diagram is shown in Fig. 5. From it, one can see that the theory can be uplifted

at most to seven dimensions, which indeed coincides with the highest dimension in

which one can embed SL(4,R) in the symmetry of the maximal theory. In six dimen-

sions, there are two possibilities: the 6A theory, obtained by deleting nodes 6, 7

eThese are N = 0 or N = 1 theories in D = 3 (upliftable to N = 0 theories in D = 4).34,40
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654321

87

Fig. 5. The SO(5, 5)+++ Dynkin diagram.

Table 6. All the p-forms of the SO(5, 5)+++ theory in every dimension.

Dim Symmetry p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

7 R+ 1 1 1 1 1

6A (R+)2 2× 1 2× 1 2× 1 2× 1 4× 1 7× 1

(3,1) (4,2)

6B (SL(2,R))2 (2,2) (2,4)

(1,3) (2,2)

5 (SL(2,R))2 × R+

(4,2)

(3,1) (3,1) (2,4)

(2,2) (2,2)
(1,3) (1,3)

3× (2,2)

(1,1) (1,1) (3,1)

(1,1) 2× (2,2) (1,3)

2× (1,1)

(45,1)

(15,1) (10,2) (45,1)

4 SL(4,R)× SL(2,R) (6,2) (10,2) 2× (15,3)

(1,3) (6,2) 2× (15,1)

(1,3)

3 SO(5, 5) 45

1050

210 1050

54
945

210

1 54

45

and 8, is the dimensional reduction of the seven-dimensional theory, while the 6B

theory corresponds to deleting node 5. The presence of two theories corresponds

to two different embeddings of SL(4,R) inside SO(5, 5). In Table 6, we report the

spectrum of p-forms obtained in various dimensions from the Kac–Moody algebra

SO(5, 5)+++. The representations are those that result from retaining only the
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SL(4,R)-singlets in the decomposition of the representations of the symmetry GD
of the maximal theory with respect to SL(n,R) × G(n)

D . As in the cases discussed

in the previous section, the only exceptions to this rule are the lower-dimensional

representations of the D-forms, which always have actual multiplicity lower than

what would result from the truncation. The number of bosonic degrees of free-

dom in any dimension is 25, which is the dimension of the D = 3 coset manifold

SO(5, 5)/[SO(5)× SO(5)].

In Sec. 2, we have discussed the possible realizations within perturbative string

theory of the magic nonsupersymmetric theories based on Cs and Hs. In particu-

lar, we have observed that a necessary condition is that the SL(2,R) or SL(3,R)

symmetry (the factored out term) commutes with the string-dilaton generator. In

particular, the theory based on the split quaternions Hs could admit a string inter-

pretation at most in D = 8, while the theory based on the split complex numbers

Cs could be obtained in perturbative string theory at most in D = 7. In particular,

we showed how this can be read from the Kac–Moody algebra by looking at the

highest dimension in which the symmetry group contains a subgroup SO(m,m).29

In the case of the SO(5, 5)+++ theory, the Dynkin diagram in Fig. 5 exhibits a

T-duality symmetry already in seven dimensions, corresponding to the exchange of

the nodes 6 and 8. This is in agreement with the fact that SL(4,R) is isomorphic

to SO(3, 3), and therefore it can be identified with the perturbative symmetry of

the maximal theory in seven dimensions.

For the n = 5 truncation, one obtains the SL(5,R)+++ theory, whose Dynkin

diagram is shown in Fig. 6. In this case, the highest dimension to which this theory

can be uplifted is 7, corresponding to the deletion of node 7 (or node 4). In seven

dimensions, such a theory is nothing but pure gravity,43 in agreement with the fact

that all the fields of the maximal theory in seven dimensions except the graviton

are nonsinglets of the global symmetry SL(5,R). In Table 7, we list the spectrum of

forms in various dimensions. The number of bosonic degrees of freedom, coincident

with the dimension of the D = 3 manifold SL(5,R)/SO(5), is 14. This theory

can admit a possible interpretation in perturbative string theory starting from

five dimensions. Indeed, SL(5,R) can be embedded in the perturbative symmetry

SO(5, 5) in five dimensions. Moreover, looking at the diagram in Fig. 6, a group of

SO(m,m) type requires at least the deletion of nodes 5 and 6.

654321

7

Fig. 6. The SL(5,R)+++ Dynkin diagram.
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Table 7. All the p-forms of the SL(5,R)+++ theory in any dimension.

Dim Symmetry p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

7 —

6 R+ 1 1 1 1

5 GL(2,R) 2 2
3 2 4

1 1 2× 2

4 GL(3,R)

10

6 10

3 8 6̄ 3× 8

3̄ 1 3 3

3̄ 3̄

1

3 SL(5,R) 24

175

75 175

24
126

126

1 2× 75

2× 24

Let us now discuss the n = 6 truncation, corresponding to the (SL(3,R) ×
SL(2,R))+++ Kac–Moody algebra.f It is the first example, in this context, of a very-

extended G+++ algebra with G nonsimple (namely, semi-simple). As mentioned

before, in Ref. 32, it has been shown that for a Kac–Moody algebra of the form

(G1 ×G2)+++, one can write down a suitable Dynkin diagram in which the affine

nodes of G+
1 and G+

2 are connected. From that diagram, one can then determine

the spectrum of the theory in various dimensions, modulo the subtlety that one

has to remove the extra Cartan generator that always occurs in the spectrum. In

our case, the Dynkin diagram is given in Fig. 7. The highest dimension to which

the theory can be uplifted is 5, corresponding to the deletion of nodes 3 and 7, and

resulting in the global symmetry SL(2,R). Indeed, SL(6,R) can be embedded in

E6(6), but not in SO(5, 5). In four dimensions, there are two theories: the 4A is the

reduction of the five-dimensional theory, with a global symmetry GL(2,R) while

the 4B has global symmetry SL(3,R). We list in Table 8 the spectrum of forms

derived from the Kac–Moody algebra. The number of bosonic degrees of freedom

is 7, like the dimension of the scalar manifold in D = 3. In any dimension, the

spectrum coincides with truncating the maximal theory to singlets of SL(6,R),

again with the exception of the lower-dimensional representations of the D-forms

fThis is an N = 0 or N = 1 theory in D = 3 (upliftable to N = 0 in D = 4).34,40
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4321

65

7

Fig. 7. The (SL(3,R)× SL(2,R))+++ Dynkin diagram.

Table 8. All the p-forms of the (SL(3,R)× SL(2,R))+++ theory in any dimension.

Dim Symmetry p = 1 p = 2 p = 3 p = 4

5 SL(2,R) 3

4A GL(2,R) 2× 1
3

2× 3 3× 3
1

10

4B SL(3,R) 8 10

8

(10,3)

(8,1) (8,3) (10,3)

3 SL(3,R)× SL(2,R) (8,1) 3× (8,3)

(1,3) 2× (1,1) 3× (8,1)

(1,3)

in D dimensions and the two-forms in three dimensions. In four dimensions, as

emerging from the diagram in Fig. 7 by deleting nodes 4, 6 and 7, one can embed

SL(6,R) inside the perturbative symmetry SO(6, 6).

Among the truncations with n > 6, the n = 8B case corresponds to the Kac–

Moody algebra SL(2,R)+++, which is pure gravity in four dimensions,43 SL(2,R)

being nothing but the Ehlers symmetry in the reduction D = 4 → 3 of General

Relativity itself44 (also cf. Ref. 30). Indeed, decomposing the E7(7) representations

of the maximal theory in four dimensions under SL(8,R), one finds that no singlets

occur and therefore only the graviton survives the projection (see Table 1). The

spectrum of forms as derived from the Kac–Moody algebra is reported in Table 9.

In three dimensions, the one-forms are in agreement with the truncation, while

there is only one singlet two-form instead of the two singlets that would survive the
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In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
7.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

U
R

O
PE

A
N

 O
R

G
A

N
IZ

A
T

IO
N

 F
O

R
 N

U
C

L
E

A
R

 R
E

SE
A

R
C

H
 (

C
E

R
N

) 
on

 0
7/

19
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



July 17, 2017 11:21 IJMPA S0217751X17501202 page 20

A. Marrani et al.

Table 9. All the p-forms of the
SL(2,R)+++ theory in any dimension.

Dim Symmetry p = 1 p = 2

4 —

3 SL(2,R) 3 1

Table 10. All the p-forms that arise from the n = 7, 8A, 9 truncations of
the maximal theory in any dimension.

n Dim Symmetry p = 1 p = 2 p = 3 p = 4

n = 7

4 R+ 1 2× 1 2× 1

3 GL(2,R)

3 2× 4

3
2× 2

6× 3

1 6× 2

3× 1 6× 1

n = 8A 3 R+ 1 2× 1 5× 1

n = 9 3 − 1

truncation. There are no three-forms, while the truncation would give a 3 from the

248 and a singlet from the 3875. For the highest-dimensional 147250 representa-

tion of three-forms in the maximal theory nothing survives the truncation.

The remaining cases n = 7, 8A and 9 correspond to nonsemi-simple three-

dimensional symmetries. The resulting list of the truncations is in Table 10. The

n = 7 theory exists in four and three dimensions, while the other two cases only

exist in three dimensions.

4. Ehlers SL(n,R) Truncations: Nonmaximal Cases

In this section, we briefly discuss how the analysis carried out in the previous

two sections can be generalized to the 1/2-maximal theories (16 supersymmetries)

and the 1/4-maximal theories (8 supersymmetries). The crucial difference with

respect to the maximal case is that the symmetry groups of these theories are not

in the split real form.g The only exception is the magic theory based on R, whose

symmetry in three dimensions is F4(4). In Ref. 17, it was shown that in general if

G3 is nonsplit, then the very-extended Kac–Moody algebra G+++
3 corresponding

to the supergravity theory has reality properties that result from considering the

Tits–Satake diagram, which is the one appropriate to identify the real form of

the three-dimensional symmetry G3. From it, as in the maximal case, it is then

possible to derive the full spectrum of forms, along with the surviving real form of

the symmetry in any dimensions. Moreover, the nodes associated to the compact

gFor the relation between these models and del Pezzo surfaces, see Ref. 45.
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Table 11. All the relevant subgroups that occur in the SL(n,R) truncations of the U-duality

symmetry groups for the 1/4-maximal magic theories (also cf. Table 2 of Ref. 34).

SL(n) D = 3 D = 4 D = 5 D = 6

n = 1 E8(−24) E7(−25) E6(−26) SO(1, 9)

n = 2 E7(−25) SO(2, 10)

n = 3 E6(−26)

n = 4 SO(1, 9)

n = 1 E7(−5) SO∗(12) SU∗(6) SU(2)× SO(1, 5)

n = 2 SO∗(12) SU(2)× SO(2, 6)

n = 3 SU∗(6)

n = 4 SU(2)× SO(1, 5)

n = 1 E6(2) SU(3, 3) SL(3,C)R U(1)× SO(1, 3)

n = 2 SU(3, 3) U(1)× SO(2, 4)

n = 3 SL(3,C)R

n = 4 U(1)× SO(1, 3)

Cartan generators in the Tits–Satake diagram determine the highest dimension to

which the theory can be uplifted.

We first consider the 1/4-maximal, magic theories19–21 based on C, H and O, and

the corresponding decomposition according to Eq. (3.1) of the U-duality symme-

tries. The result is the chain of theories displayed in Table 11.h As in the analogous

Table 5 for the maximal theory, Table 11 is symmetric. In all cases, the n = 2

truncation can be uplifted to four dimensions, while the n = 3 and n = 4 trunca-

tions only exist in three dimensions. In any dimension, the spectrum of the theory

whose symmetry is G
(n)
3 in three dimensions can be derived using the correspond-

ing G
(n)+++
3 . The representations of the fields of the theory based on O, associated

to the E+++
8(−24) Kac–Moody algebra, coincide with those of the maximal theory in

dimension from three to six listed in Table 1, keeping in mind that the reality

hSome comments on Table 11 are in order. The D = 3 theories with U-duality E6(−26), SO(1, 9),

SU∗(6), SU(2) × SO(1, 5), SL(3,C)R and U(1) × SO(1, 3) are not present in Table 2 of Ref. 34
because these theories (N = 0 or N = 1 in D = 3) cannot be uplifted to D = 4. Interestingly,

SO(1, 9) shares with F4(−20) (the actual U-duality of the N = 9, D = 3 theory) the same maximal

compact subgroup SO(9), which indeed is the N = 9 R-symmetry in D = 3. The theory with
U-duality E7(−25) in D = 3 can be N = 0, 1, 2, and in the latter case admits an N = 1, D = 4

uplift to a theory with U-duality SO(2, 10). Analogously, the theory with U-duality SO∗(12) in
D = 3 can be N = 0, 1, 2, and in the latter case admits an N = 1, D = 4 uplift to a theory
with U-duality SU(2)× SO(2, 6). Moreover, the theory with U-duality SU(3, 3) in D = 3 can be

N = 0, 1, 2, and in the latter case admits an N = 1, D = 4 uplift to a theory with U-duality
U(1)×SO(2, 4). These three cases can be summarized by stating that the theories with U-duality

Conf
(
JA
3

)
in D = 3 can be N = 0, 1, 2, and in the latter case, they admit an N = 1, D = 4

uplift to a theory with U-duality (Tri(A)/SO(A))× SO(2, q + 2), where q := dimR A = 8, 4, 2 for
A = O,H,C.

1750120-21

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
7.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

U
R

O
PE

A
N

 O
R

G
A

N
IZ

A
T

IO
N

 F
O

R
 N

U
C

L
E

A
R

 R
E

SE
A

R
C

H
 (

C
E

R
N

) 
on

 0
7/

19
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



July 17, 2017 11:21 IJMPA S0217751X17501202 page 22

A. Marrani et al.

properties of the representations are different because the groups are in different

real forms. Similarly, the spectrum of the n = 2 truncation of the theory based

on O, associated to the E+++
7(−25) Kac–Moody algebra, can be read by looking at

the rows corresponding to D = 3 and D = 4 in Table 3. This generalizes to all

the theories listed in Table 11. The analysis of the previous two sections therefore

gives the spectrum of all the theories that are truncations of the theories based

on O, as well as the spectrum of the theories based on C and H. The spectrum

of the theories that arise as truncations of the ones based on C and H correspond

to the Kac–Moody algebras SO∗(12)+++, SU∗(6)+++ and SU(3, 3)+++, as well as

the nonsimple cases (SU(2) × SO(1, 5))+++ and SL(3,C)+++ and the nonsemi-

simple case (U(1) × SO(1, 3))+++. We have verified that for all the semi-simple

cases, the Kac–Moody algebra gives a result consistent with the truncation in the

sense explained in the previous two sections.

The case of the magic theory based on R, corresponding to the Kac–Moody

algebra F+++
4(4) , is special because the corresponding symmetry algebra is not simply

laced. The symmetry of the theory is Sp(6,R) in D = 4, SL(3,R) in D = 5 and

SL(2,R) in D = 6. The n = 2 truncation of the three-dimensional theory gives a

theory with symmetry Sp(6,R), whose spectrum can be read from the Sp(6,R)+++

Kac–Moody algebra. This theory can be N = 0, 1, 2 in D = 3, and it can be uplifted

at most to N = 1, D = 4, where it gives a symmetry SO(2, 3) which is the n = 2

truncation of the four-dimensional Sp(6,R) theory. On the other hand, the theories

in D = 5 also seem to admit well-defined n = 2 truncations, but these cannot

result as the uplift of the Sp(6,R)+++ because the roots of the SL(3,R) and the

SL(2,R) which are the symmetries in D = 5 and D = 6 are short roots of F4(4).

Similarly, the n = 3 and n = 4 truncations in three dimensions give theories with

symmetriesi SL(3,R) and the SL(2,R), respectively, but these theories cannot be

obtained from the corresponding very-extended algebras because again the roots of

these algebras are short. What this shows is that in general the truncation analysis

is more subtle for algebras that are not simply laced.

We now move to consider the 1/4-maximal theories whose symmetry is SO(4,m)

in three dimensions (related to the cubic semi-simple Jordan algebra R ⊕ Γ1,m−3),

as well as to the 1/2-maximal theories whose symmetry is SO(8,m) (related to the

cubic semi-simple Jordan algebra R ⊕ Γ5,m−3). We list the results of the trunca-

tions according to Eq. (3.1) in Tables 12 and 13. As Table 12 shows, analogously to

the magic case, the n = 2 truncation of the 1/4-maximal theory is defined in three

and four dimensions, while the n = 3 and n = 4 truncations are only defined in

three dimensions. There are two different n = 2 truncations in four dimensions, cor-

responding to the fact that the (SL(2,R)×SO(2,m− 2))+++ Kac–Moody algebra

(whose Tits–Satake diagram can be drawn following the prescription of Ref. 32)

iWhile the D = 3 SL(3,R) theory can only be N = 0, 1 and it does not admit a supersymmetric
uplift to D = 4, the D = 3 SL(2,R) theory can be N = 0, 1, 2, and in the latter case, it can be
regarded as the dimensional reduction of “pure” N = 1, D = 4 supergravity.
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admits two different uplifts to four dimensions. Similarly, the three-dimensional

theory admits two different n = 4 truncations, corresponding to the fact that there

are two theories in six dimensions, that we call 6A and 6B. Exactly, the same con-

siderations apply to the truncations of the 1/2-maximal theories whose symmetries

are listed in Table 13. In this case, the real form is such that the theory admits an

uplift to ten dimensions.

In general, the embedding that one has to consider for the SL(n,R) truncation

of these theories is

SO(q, r) ⊃ SO(n, n)× SO(q − n, r − n) (4.1)

and therefore the truncation is only possible if both q and r are greater or equal to

n. For generic n, the SO(n, n) subgroup is further decomposed as R+ × SL(n,R),

and the SL(n,R) factor is the one that is truncated. This explains all the entries in

Tables 12 and 13, with the only exceptions of n = 2 and n = 4. In the n = 2 case, for

generic D, one uses the isomorphism between SO(2, 2) and SL(2,R)×SL(2,R) and

after the truncation an SL(2,R) subgroup remains. In D = 4, the symmetry group

is SL(2,R)× SO(2,m− 2) in the 1/4-maximal case and SL(2,R)× SO(6,m− 2)

in the 1/2-maximal case, and therefore an additional n = 2 truncation is allowed

where the SL(2,R) factor in the symmetry group is truncated out. Finally, for

n = 4, apart from the standard decomposition which is valid for any n, one can

also consider the embedding in Eq. (4.1) for n = 3 and identify SO(3, 3) with

the SL(4,R) that one truncates away. This way of identifying and truncating the

SL(4,R) factor gives rise to the n = 4B theories, while the n = 4A correspond to

the standard identification.

Having explicitly identified the truncation, one can work out how the various

representations of the p-form potentials are projected on singlets of SL(n,R). In

particular, we focus on the six-dimensional 1/2-maximal 6A and 6B theories whose

symmetry groups are R+×SO(4, n−4) and SO(5, n−3) as reported in Table 13. The

p-forms occurring in these theories are listed in Table 14. It should be noted that

in the table sets of indices are separated by commas, where each set corresponds

to the antisymmetric indices within a mixed-symmetry irreducible representation.

We want to extract the contributions to the truncation to singlets of SL(n,R).

We can consider for instance the four-forms A4,MN , where M,N are vector indices

of SO(4,m − 4) in the 6A theory and of SO(5,m − 3) in the 6B theory. The

decomposition is

A4,MN → A4 ⊕A4,µν , (4.2)

where the µ, ν indices are vector indices of SO(4−n,m− 4−n) in 6A and SO(5−
n,m − 3 − n) in 6B. In this expression, the four-form singlet that arises is the

potential which is dual to the R+ dilaton that generically occurs in the truncated

theory. The same decomposition can be worked out for all the representations in

Table 14, and as discussed in the previous section, one expects that this procedure

gives precisely the spectrum of the truncated theory. As in all other cases, the only
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Table 14. The p-forms in the 6A and 6B theories with symmetry groups are R+ × SO(4, n− 4)
and SO(5, n− 3).

Dim Symmetry p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

6A R+ × SO(4, n− 4) A1,M 2× A2 A3,M A4 ⊕ A4,MN 2× A5,M

⊕ A5,MNP

3× A6 ⊕ 2

× A6,MN ⊕ A6,M,N

⊕ A6,MNPQ

6B SO(5, n− 3) A2,M A4,MN A6,M ⊕ A6,MN,P

exceptions are the six-forms belonging to the lower-dimensional representations

of the symmetry group, whose multiplicity is less than what one would get by

truncating on the SL(n,R) singlets.

By performing the truncation on all the fields in Table 14, one finds that the

6A- and 6B-truncated theories differ with respect to the initial theories only in the

appearance of additional singlets. This is a completely general result. The SL(n,R)

truncation of the theories with orthogonal symmetry groups SO(q, r) produces a

theory with reduced symmetry SO(q − n, r − n) containing p-form potentials that

are, rank by rank, the same tensors of the parent theory, with the only addition of

singlets. The analysis of the four-dimensional case can also be similarly carried out,

but it is slightly more complicated because of the nonsimple symmetry and the fact

that the previous statement holds only in the orthogonal sector.

5. Black Holes and Duality Orbits

In Sec. 2, we have analyzed the three-dimensional E7(7) and E6(6) theories based

on split quaternions Hs and split complex numbers Cs, respectively, showing how

they can be obtained as truncations of the maximal supergravity and deriving their

uplifts to higher dimensions. In this section, we shall study the orbit stratification of

the relevant representation space of the black hole charges under the nontransitive

action of the global (duality) symmetry group. This is particularly relevant in the

classification of the (extremal) black hole solutions of the corresponding theory. As

mentioned above, together with the three-dimensional maximal theory E8(8) based

on split octonions Os, the two magic nonsupersymmetric theories exhibit, upon

dimensional reduction to D = 3, a duality group of (split) En(n) type. The same

group can also be realized as quasi-conformal46 group of the corresponding cubic

Jordan algebra JAs
3 over the division algebras As = Cs, Hs, Os. The relevant magic

square displaying all the corresponding duality Lie algebras is the doubly split magic

square L3(As,Bs),26,27,47 given in Table 2.

The theory over Os is maximal supergravity, and the stratification of U-orbits

of asymptotically flat-branes in D = 4, 5, 6 dimensions is known.35,37,48–50 On the

other hand, as pointed out above, the theories over Hs and Cs are nonsuper-

symmetric; namely, their bosonic Lagrangian density cannot be identified with the

purely bosonic sector of a supergravity theory. For this reason, they did not receive
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great attention in literature,j despite their presence in the classification of sym-

metric nonlinear sigma models coupled to Maxwell–Einstein gravity (cf. Table 2 of

Ref. 34).

The Jordan algebraic formalism used to classify extremal black hole orbits in

the maximal case in D = 4, 5 can be generalized to the theories based on Cs and

Hs. In order to show how to proceed, it can be useful to consider as an example

the theories based on Cs. In four dimensions, their duality group is SL(6,R) and

the scalar manifold reads

Conf
(
JCs
3

)
mcs

(
Conf

(
JCs
3

)) =
SL(6,R)

SO(6)
, (5.1)

where Conf
(
JCs
3

)
' Aut

(
F
(
JCs
3

))
is the conformal group46 of the cubic Jordan alge-

bra JCs
3 or, equivalently, the automorphism group of the Freudenthal triple system

(FTS) F over JCs
3 ,54–56 and mcs stands for maximal compact subgroup. The 0-brane

(black hole) dyonic irreducible representation is the rank 3 antisymmetric self-dual

(real) 20, so that the pair (SL(6,R),20) defines a group “of E7-type,” characterized

by a unique primitive quartic invariant polynomial I4.57–60 The action of SL(6,R)

on the 20 representation determines the stratification into orbits, classified in terms

of invariant constraints on I4 or, equivalently, in terms of the rank of the correspond-

ing representative in the Freudenthal triple system F
(
JCs
3

)
.61,62 Below, we list the

stratification together with the corresponding values of the quartic invariant.

Rank 1: The rank 1 orbit is simply

SL(6,R)

[SL(3,R)× SL(3,R)] nR(3,3′)
. (5.2)

Rank 2: The rank 2 orbit reads

SL(6,R)

[Sp(4,R)× SO(1, 1)] n (R(4,2) × R)
, (5.3)

where R(4,2) ' (4,2) denotes the real bi-fundamentalk of the split form Sp(4,R)×
SO(1, 1) ' SO(3, 2)× SO(1, 1).

Rank 3: There is only one rank 3 orbit

SL(6,R)

SL(3,R) nR8
, (5.4)

where R8 ' 8 denotes the adjoint of SL(3,R).

jFor symmetries of Freudenthal triple systems and cubic Jordan algebras defined over split alge-
bras, cf. e.g. Refs. 46 and 47, Table 1 of Ref. 51, and references therein. Theories over split algebras

have been recently considered, in a different context, in Ref. 52. Furthermore, Cs- and Hs-valued

scalar fields have also been recently considered in cosmology.53
kThe real fundamental irreducible representation of Sp(4,R) is the real spinor of SO(3, 2).
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Rank 4: In the rank 4 case, the quartic invariant I4 is different from zero and there

is a splitting of the orbits, depending on the I4 sign:

I4 > 0:
SL(6,R)

SL(3,C)R
(5.5a)

and the dyonic

I4 < 0:
SL(6,R)

SL(3,R)× SL(3,R)
, (5.5b)

are the two orbits of rank 4 elements of the FTS F over JCs
3 .

It should be noted that, apart from the rank 4 case where it is induced by

the dyonic solution, for a fixed rank of the FTS, there is no stratification of the

orbits. The absence of stratification can be traced back to the structure of the

α5
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Fig. 8. The weights of the 20 of SL(6,R).
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Table 15. Stabilizers of Λ1 + Λ4 + aΛ6 + bΛ7. The com-
mon stabilizers are the generators that annihilate each of the

four weights separately, while the conjunction stabilizers are

those that give a vanishing result acting on the particular
combination of weights considered.

Common Conjunction

Λ1, Λ4, Λ6, Λ7 Λ1 + Λ4 + aΛ6 + bΛ7

Eα2+α3 − E−α3−α4

Eα3+α4 − E−α2−α3

Eα1+α2+α3 − aE−α3−α4−α5

Eα3+α4+α5 − aE−α1−α2−α3

Eα5 − aE−α1

Eα1 − aE−α5

Hα2 −Hα4 Eα1+α2+α3+α4 − bE−α2−α3−α4−α5

Hα1 −Hα5 Eα2+α3+α4+α5 − bE−α1−α2−α3−α4

Eα1+α2 − bE−α4−α5

Eα4+α5 − bE−α1−α2

Eα2 − abE−α4

Eα4 − abE−α2

F−abα3 + abF−abα2+α3+α4

F−abα3 + bF−abα1+α2+α3+α4+α5

duality algebra and of its relevant FTS space. In particular, for maximal theories, it

has been shown35,37,48–50 that rank 1 elements in the Jordan algebra construction

correspond to single-charge solutions, while higher rank elements correspond to

multicharge solutions. Orbits of black hole solution related to different values of

the rank can be computed using bound states of weights in the representation of

the duality charges. The number of weights in the bound state must be equal to the

rank in the Jordan algebra construction.35 The stratification reflects the equivalence

or the difference between the considered combinations of weights, while the absence

of splitting signals degeneracy.

This approach makes it possible to extend this kind of analysis to any dimension.

In order to show how it works, let us analyze the rank 4 orbits of the previous case;

the Dynkin indices of the weights of the 20 of SL(6,R) are shown in Fig. 8. The

rank 4 element corresponds to a bound state of the weights Λ1, Λ4, Λ6, Λ7. There

are three possible independent bound states that can be written as Λ1 + Λ4 +

aΛ6 + bΛ7 with a, b = ±1.l The stabilizers are listed in Table 15 as functions of

a and b. The complexification of the stabilizing algebra gives an SL(3,C) with

lThe two states with a = ±1, b = ∓1 are not independent.
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the following generators:

Hβ1
=

1

2

[
Hα1

−Hα5
+
√
−ab

(
F−abα2+α3+α4

− aF−abα1+α2+α3+α4+α5

)]
,

Hβ2
=

1

2

[
Hα2

−Hα4
−
√
−ab

(
F−abα3

+ abF−abα2+α3+α4

)]
,

Hβ3
=

1

2

[
Hα4

−Hα2
−
√
−ab

(
F−abα3

+ abF−abα2+α3+α4

)]
,

Hβ4
=

1

2

[
Hα5

−Hα1
+
√
−ab

(
F−abα2+α3+α4

− aF−abα1+α2+α3+α4+α5

)]
,

(5.6)

Eβ1 = Eα1 − aE−α5 −
√
−ab

(
Eα1+α2+α3+α4 − bE−α2−α3−α4−α5

)
,

Eβ2 = Eα2+α3 − E−α3−α4 +
√
−ab

(
Eα2 − abE−α4

)
,

Eβ3 = Eα3+α4 − E−α2−α3 +
√
−ab

(
Eα4 − abE−α2

)
,

Eβ4 = Eα5 − aE−α1 −
√
−ab

(
Eα2+α3+α4+α5 − bE−α1−α2−α3−α4

)
,

(5.7)

E−β1
= Eα5

− aE−α1
+
√
−ab

(
Eα2+α3+α4+α5

− bE−α1−α2−α3−α4

)
,

E−β2
= Eα3+α4

− E−α2−α3
−
√
−ab

(
Eα4
− abE−α2

)
,

E−β3
= Eα2+α3

− E−α3−α4
−
√
−ab

(
Eα2
− abE−α4

)
,

E−β4
= Eα1

− aE−α5
+
√
−ab

(
Eα1+α2+α3+α4

− bE−α2−α3−α4−α5

)
,

(5.8)

Eβ1+β2
= Eα1+α2+α3

− aE−α3−α4−α5
−
√
−ab

(
Eα1+α2

− bE−α4−α5

)
,

Eβ3+β4
= Eα3+α4+α5

− aE−α1−α2−α3
−
√
−ab

(
Eα4+α5

− bE−α1−α2

)
,

E−β1−β2
= Eα3+α4+α5

− aE−α1−α2−α3
+
√
−ab

(
Eα4+α5

− bE−α1−α2

)
,

E−β3−β4
= Eα1+α2+α3

− aE−α3−α4−α5
+
√
−ab

(
Eα1+α2

− bE−α4−α5

)
.

(5.9)

By varying the values of a and b, one obtains two different real forms for the

stabilizers, namely SL(3,C)R and SL(3,R)×SL(3,R), corresponding, respectively

to a = b = ±1 and a = −b = ±1 choices.m The two resulting real forms, SL(3,C)R
and SL(3,R) × SL(3,R) of SL(3,C), have the same signature, but they are dis-

criminated by looking at the imaginary units appearing in the Chevalley basis (in

particular, for SL(3,C)R, there are not imaginary units in the stabilizing algebra).

Summarizing, the four-weights bound state orbits are those given in (5.5a) and

(5.5b). It should be stressed that, although in principle, the independent bound

states would have been three, only two orbits are present. One is the dyonic orbit,

corresponding to a and b with opposite signs. The second orbit is related to the two

mThe subscript “R” denotes the Lie algebra to be considered as an algebra over the reals.
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combinations where a and b have the same sign. They are independent, but give

rise to the same orbit, explaining the absence of stratification. The same behavior is

exhibited by the theories based on Hs, extending this property to the whole family

of theories based on Cs, Hs and Os.
It is interesting to compare the previous set of theories to magic N = 2 and

N = 4 supergravity theories in D = 4 where, on the contrary, a rich stratification

of orbits appears (for a comprehensive treatment, see Ref. 38). To understand the

basic factors marking such a difference, it is worth to consider, as a representative

example, the N = 2 magic supergravity based on JR
3 , whose D = 4 U-duality group

is Sp(6,R), obtained uplifting the F4(4) three-dimensional theory. In this case, the

0-branes (black holes) belong to the 14′ (rank 3 antisymmetric skew-traceless)

irreducible representation, whose highest weight, Λ1, is 1 0 0 . To construct the

rank 2 orbit, we have to combine the highest weight with the weight Λ4 identified

by the Dynkin labels 2 0 − 1 . The possible independent bound states are thus

Λ1 ± Λ4. The rank 2 orbits read

Sp(6,R)

SO(1, 3) nR4 × R
(5.10)

and

Sp(6,R)

SO(2, 2) nR4 × R
, (5.11)

corresponding to the combinations with the plus and minus sign, respectively. Thus,

two nonisomorphic rank 2 orbits exist. The same splitting phenomenon takes place

for the rank 3 and rank 4 cases, namely two rank 3 orbits and three rank 4 orbits

are present. It is worth remarking that the maximal possible splitting is actually

realized, since two and three are, respectively the number of independent three-

and four-charge bound states. The obtained stratification of orbits is not surprising,

being related to the presence of weights of different lengths in the 14′, a property

never encountered in the supergravity theories related to split composition alge-

bras.36 Indeed, the short weights are responsible for the change of compactness of

some generators in the stabilizer when switching from one combination to the other,

giving rise to the split of the orbits. In particular, in the case at hand, the conjunc-

tion stabilizer F±α2+α3
= Eα2+α3

± E−α2−α3
appearing in the full set of stabilizer

of Table 16 does the job.

The previous considerations hold true not only for the uplifts of the F4(4) theory,

but also for its SL(n,R) truncations. This is the case, for instance, of the three-

dimensional theoryn with SL(3,R) obtained by truncating the Ehlers SL(3,R).

In this theory, the 0-branes belong to the representationo 6 that, containing again

nNote that F4(4) embeds nonsymmetrically and maximally two SL(3,R)’s, which are not on the

same footing. The one yielding triplets and anti-triplets in the decomposition of the adjoint of
F4(4) is the Ehlers group.
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Table 16. Stabilizers for the two-weights bound states Λ1 ± Λ4 in
the 14′ of Sp(6,R).

Common Conjunction

Λ1, Λ4 Λ1 + Λ4 Λ1 − Λ4

E2α1+2α2+α3

Eα1+2α2+α3

F−α2+α3
F+
α2+α3

Eα1+α2+α3

Eα1+α2

E2α2+α3 − E−α3 E2α2+α3 + E−α3

Eα1 Eα2

Hα2

Eα3 − E−2α2−α3 Eα3 + E−2α2−α3

E−α2

weights of two different lengths induce the splitting of the orbits. The phenomenon is

completely general, and an exhaustive treatment will be presented in a forthcoming

paper.63

An analysis of the other N = 2 (R⊕Γ1,m−3-based) and the N = 4 (R⊕Γ5,m−3-

based) supergravity theories points out additional subtleties. In particular, since the

U-duality symmetries do not occur in the split form, nonreal weights are present in

their representations. The reality properties of the weights depend on the real form

of the algebra, and they are encoded in the corresponding Tits–Satake diagram.

Nonreal weights play here the same role as the short weights, giving rise in an

analogous way to orbit splittings.36 Let us explain the mechanism using as a guide

the mentioned analysis of the rank 4 orbits in the 20 of SL(6,R). If the algebra

had been SU(3, 3) instead of SL(6,R), the degeneracy between the two rank 4

orbits with a = b = ±1 would have been lifted, leaving three distinct rank 4 orbits,

namely SL(6,R)/[SU(3) × SU(3)] for a = b = 1, SL(6,R)/[SU(1, 2) × SU(1, 2)]

for a = b = −1 and SL(6,R)/[SL(3,C)R] in the other cases (note that the first two

cosets do not exist!).

The picture emerging from the previous discussion seems to point towards a

precise statement: in absence of supersymmetry, there is not splitting of orbits, while

in nonmaximal supergravity theories, the orbit splitting can take place depending

on the real form and on the relevant representations of the duality group.

6. Discussion and Conclusions

We have analyzed the magic nonsupersymmetric theories based on split quaternions

Hs and split complex numbers Cs. These theories can be obtained as SL(2,R) and

SL(3,R) Ehlers truncations of maximal supergravity and are related to the E+++
7(7)

oThis is nothing but the representation of JR
3 with respect to its reduced structure group SL(3,R).

Indeed, SL(3,R) is also the global (U-duality) symmetry of the N = 2, D = 5 uplift of the N = 4,
D = 3 F4(4) theory.
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and the E+++
6(6) very extended Kac–Moody algebras.28,29 We have generalized the

procedure to SL(n,R) Ehlers truncations (with n > 3) of the maximal super-

gravity giving rise to additional classes of nonsupersymmetric theories, as well as

to SL(n,R) Ehlers truncations of nonmaximal supergravity theories. It should be

emphasized that our analysis involves not only the propagating degrees of freedom,

but also the (D−1)- and D-forms, in any dimension D ≥ 3. Since the field strength

of the (D−1)-forms are dual to mass parameters, our analysis also encodes massive

deformation and gaugings. In some cases, the truncation generates theories that are

obtained by very-extended Kac–Moody algebras of the form [G1 × G2]+++, that

have been introduced in Ref. 32. Finally, we have discussed properties of the duality

orbits of extremal black hole solutions of these theories.

An interesting issue is related to the embedding of the class of magic theories

into perturbative string theory.p In Ref. 65, the magic exceptional supergravity

based on JO
3 and with an E8(−24) symmetry in D = 3 has been constructed in

3 ≤ D ≤ 6. In particular, the six-dimensional theory has been identified as the long

wavelength limit of a certain compactification of Type IIB on K3. It is realized as

a peculiar shift-orientifold67–72,q of the Type IIB, where the unoriented projection

truncates the 5 tensor multiplets of the untwisted sector to 1 tensor multiplet and

4 hypermultiplets and the 16 twisted tensor multiplets to 8 tensor multiplets and

8 hypermultiplets. The introduction of 16 D5-branes to cancel anomalies provides

16 additional Abelian vector multiplets, with gauge group U(1)16. The momentum

shift paired to the Z2-orbifold involution defining the K3 prevents the introduction

of D9-branes. The other D-dimensional models (D < 6) in the chain are obtained

by reducing the six-dimensional theory on a (6−D)-torus. In particular, the magic

octonionic four-dimensional theory with E7(−25) symmetry is thus obtained as a

freely-acting orientifold of Type IIB on K3× T 2.

There also exist string-theory realizations of the complex and quaternionic magic

theories in four dimensions. In Ref. 73, the theory defined by the algebra JH
3 has been

built as an asymmetric shift-orbifold of the Type IIA string. In particular, starting

from an (S-)dual pair of Type IIA theories compactified on T 4 in six dimensions and

performing a suitable asymmetric shift-orbifold projection on T 2,67–69,72 one ends

up with a self dual theory in four dimensions, exactly coincident with the magic

theory. Interestingly, the theory is free of hypermultiplets and with the dilaton

belonging to a vector multiplet. The bosonic massless spectrum includes the N = 2

gravity multiplet coupled to 15 vector multiplets and perfectly coincides with the

one of the N = 6 pure supergravities, obtainable with analogous construction in

terms of another self-dual theory. The 30 scalars, of course, parametrize the coset

SO∗(12)/U(6).

The same quaternionic magic model has been obtained in Ref. 74 as N =

2 (nongeometric) compactifications of Type IIA, using a different asymmetric

pSee also Secs. 12 and 13 of Ref. 64.
qFor a review, see e.g. Ref. 66.
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shift-orbifolds realized within the free fermionic construction.75,76 The procedure

rests on adding a peculiar chiral twist that substitutes the extra gravitinos with

fermions in the twin N = 6 model, related to a simpler asymmetric shift projec-

tion. Again, these models are free of hypermultiplets with the dilaton belonging to a

vector multiplet. Using an analogous procedure, the magic theory defined by JC
3 can

be obtained as a projection from the N = 3 theory coupled to 3 vector multiplets,

realized again as an asymmetric shift-orbifold of the Type IIA with free fermions.

The massless spectrum contains an N = 2 supergravity coupled to 8 vector multi-

plets. The 18 scalars parametrize the coset SU(3, 3)/SU(3) × SU(3) × U(1), the

model is hyperfree and the dilaton is in a vector multiplet. It should be stressed that

these compactifications have (1, 4) supersymmetry on the worldsheet and do not

correspond to Calabi–Yau compactifications, associated to (2, 2) supersymmetry

on the worldsheet. The quaternionic model can be uplifted to five dimensions and

reduced on S1 to three dimensions, while the complex model can be reduced to

three dimensions, but cannot be oxidized to higher dimensions because the involved

moduli come from twisted sectors of the orbifold. As emerging from the previous dis-

cussion, it is clear that the embedding within string theory is not necessarily unique.

For instance, besides the two realizations of the magic quaternionic theory in four

dimensions, the five-dimensional magic quaternionic theory can also be obtained65

as an S1 compactification of a six-dimensional orientifold of a corresponding Gepner

model.77

The situation is subtler for the magic nonsupersymmetric theories, where quan-

tum corrections are not protected. As seen, two are the “necessary” conditions: one

is that the dilaton must factor out of the truncation algebra, the second is that the

truncation algebra itself must be a subalgebra of the perturbative T-duality sym-

metry. In general, it is not obvious that even if the two conditions are respected,

the model can be seen as a perturbative truncation of a certain string model whose

massless sector coincides with the nontruncated supergravity. Just to give a taste

of the problem, let us consider one of the simplest models, the 8B theory in eight

dimensions related to split quaternions. If realized in string theory, it should result

as a truncation to eight dimensions of the ten-dimensional Type IIB string, whose

massless bosonic NS–NS sector coincides with the one of the IIB supergravity.

Specifically, it contains the graviton, gMN , the two form BMN and the dilaton ϕ

in the NS–NS sector and a scalar C0, a two-form CMN and a self-dual four form

C+
MNPQ in the RR sector. By compactifying on a two torus down to eight dimen-

sions, the spectrum can be organized in terms of representations of the geometric

SL(2) group. The truncated theory corresponds to keeping only the SL(2) singlets.

It amounts to have a nonsupersymmetric theory with a massless spectrum consist-

ing of the graviton gµν , the dilaton ϕ, four additional scalars ϕi, i = 1, . . . , 4 and

three two-forms. The scalars correspond to the internal part of the ten-dimensional

two-forms B and C, to the volume of the two torus and to the surviving RR scalar.

The two forms are the survival space–time components of the ten-dimensional B

and C and an additional two form coming from the combination of the internal
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components of the self-dual ten-dimensional four-form. The question is whether the

described remnant spectrum in eight dimensions is obtainable as a string theory

projection of the Type IIB. In other words, we need a compactification on a mani-

fold that is able to throw away the fermions and to project the rest on singlets of

SL(2,Z). The simplest natural action one could envisage, as in the magic super-

symmetric cases, is a freely acting (Scherk–Schwarz) orbifold deformation (like that

in Refs. 67–72) combined with the action of a discrete (finite) subgroup commut-

ing with, or stabilizing, the SL(2,Z). The most promising attempt, a freely acting

Z4 orbifold, does the truncation job, but unfortunately does not exist at the level

of perturbative string theory, since a modular invariant Z4 orbifold projection of

Type IIB is not available in eight dimensions. We cannot suggest closer models nor

give definite answers. As said, since we are singling out electric–magnetic duality

symmetries, it is not at all guaranteed that a perturbative string theory model

exists corresponding to these truncations. It could be that some reductions of this

theory exist in lower dimensions, but there are obstructions to oxidize them up to

eight dimensions. Of course, it would also be very interesting to analyze nonpertur-

bative completions of our models but, being non supersymmetric, the control over

quantum corrections is unavoidably very limited.

Acknowledgments

L. Romano would like to thank E. Bergshoeff and the Quantum Gravity group

of the Rijksuniversiteit Groningen for their kind hospitality while this work

was being completed. This work has been supported in part by the STaI

“Uncovering Excellence” Grant of the University of Rome “Tor Vergata,” CUP

E82L15000300005 and in part by “Sapienza” University of Rome.

References

1. E. Cremmer and B. Julia, Phys. Lett. B 80, 48 (1978).
2. E. Cremmer and B. Julia, Nucl. Phys. B 159, 141 (1979).
3. C. M. Hull and P. K. Townsend, Nucl. Phys. B 438, 109 (1995), arXiv:hep-th/

9410167.
4. J. H. Schwarz, Nucl. Phys. B (Proc. Suppl.) 55, 1 (1997), arXiv:hep-th/9607201.
5. C. Vafa, Lectures on strings and dualities, arXiv:hep-th/9702201.
6. H. Nicolai and H. Samtleben, Phys. Rev. Lett. 86, 1686 (2001), arXiv:hep-th/0010076.
7. B. de Wit, H. Samtleben and M. Trigiante, Nucl. Phys. B 655, 93 (2003),

arXiv:hep-th/0212239.
8. B. de Wit, H. Samtleben and M. Trigiante, Nucl. Phys. B 716, 215 (2005),

arXiv:hep-th/0412173.
9. B. de Wit, H. Samtleben and M. Trigiante, J. High Energy Phys. 0509, 016 (2005),

arXiv:hep-th/0507289.
10. H. Samtleben and M. Weidner, Nucl. Phys. B 725, 383 (2005), arXiv:hep-th/0506237.
11. P. C. West, Class. Quantum Grav. 18, 4443 (2001), arXiv:hep-th/0104081.
12. I. Schnakenburg and P. C. West, Phys. Lett. B 517, 421 (2001), arXiv:hep-th/0107181.
13. I. Schnakenburg and P. C. West, Phys. Lett. B 540, 137 (2002), arXiv:hep-th/0204207.

1750120-34

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
7.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

U
R

O
PE

A
N

 O
R

G
A

N
IZ

A
T

IO
N

 F
O

R
 N

U
C

L
E

A
R

 R
E

SE
A

R
C

H
 (

C
E

R
N

) 
on

 0
7/

19
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

https://arxiv.org/abs/hep-th/9410167
https://arxiv.org/abs/hep-th/9410167
https://arxiv.org/abs/hep-th/9607201
https://arxiv.org/abs/hep-th/9702201
https://arxiv.org/abs/hep-th/0010076
https://arxiv.org/abs/hep-th/0212239
https://arxiv.org/abs/hep-th/0412173
https://arxiv.org/abs/hep-th/0507289
https://arxiv.org/abs/hep-th/0506237
https://arxiv.org/abs/hep-th/0104081
https://arxiv.org/abs/hep-th/0107181
https://arxiv.org/abs/hep-th/0204207


July 17, 2017 11:21 IJMPA S0217751X17501202 page 35

Nonsupersymmetric magic theories and Ehlers truncations

14. F. Riccioni and P. C. West, J. High Energy Phys. 0707, 063 (2007), arXiv:0705.0752

[hep-th].

15. E. A. Bergshoeff, I. De Baetselier and T. A. Nutma, J. High Energy Phys. 0709, 047

(2007), arXiv:0705.1304 [hep-th].

16. I. Schnakenburg and P. C. West, J. High Energy Phys. 0405, 019 (2004),

arXiv:hep-th/0401196.

17. F. Riccioni, A. Van Proeyen and P. C. West, J. High Energy Phys. 0805, 079 (2008),

arXiv:0801.2763 [hep-th].

18. E. A. Bergshoeff, J. Gomis, T. A. Nutma and D. Roest, J. High Energy Phys. 0802,

069 (2008), arXiv:0711.2035 [hep-th].

19. M. Gunaydin, G. Sierra and P. K. Townsend, Phys. Lett. B 133, 72 (1983).

20. M. Gunaydin, G. Sierra and P. K. Townsend, Nucl. Phys. B 242, 244 (1984).

21. M. Gunaydin, G. Sierra and P. K. Townsend, Nucl. Phys. B 253, 573 (1985).

22. S. Bellucci, Proceedings, INFN-Laboratori Nazionali di Frascati School on the Attrac-

tor Mechanism on Supersymmetric Gravity and Black Holes (SAM 2009 ), Frascati,

Italy, 29 June–3 July 2009, Springer Proc. Phys., Vol. 142 (2013), p. 1.

23. H. Freudenthal, Adv. Math. 1, 145 (1963).

24. J. Tits, Nederl. Akad. Wetensch. Proc. Ser. A 69, 223 (1966) (in French).

25. B. A. Rozenfeld, Dokl. Akad. Nauk. SSSR 106, 600 (1956) (in Russian).

26. C. H. Barton and A. Sudbery, Magic squares of Lie algebras, arXiv:math/0001083

[math-ra].

27. S. L. Cacciatori, B. L. Cerchiai and A. Marrani, Adv. Theor. Math. Phys. 19, 923

(2015), arXiv:1208.6153 [math-ph].

28. F. Englert, L. Houart, A. Taormina and P. C. West, J. High Energy Phys. 0309, 020

(2003), arXiv:hep-th/0304206.

29. A. Kleinschmidt, I. Schnakenburg and P. C. West, Class. Quantum Grav. 21, 2493

(2004), arXiv:hep-th/0309198.

30. S. Ferrara, A. Marrani and M. Trigiante, J. High Energy Phys. 1211, 068 (2012),

arXiv:1206.1255 [hep-th].

31. A. Marrani, E. Orazi and F. Riccioni, J. Phys. A 44, 155207 (2011), arXiv:1012.5797

[hep-th].

32. A. Kleinschmidt and D. Roest, J. High Energy Phys. 0807, 035 (2008), arXiv:0805.

2573 [hep-th].

33. E. Cremmer, B. Julia, H. Lu and C. N. Pope, Higher dimensional origin of D = 3

coset symmetries, arXiv:hep-th/9909099.

34. P. Breitenlohner, D. Maison and G. W. Gibbons, Commun. Math. Phys. 120, 295

(1988).

35. H. Lu, C. N. Pope and K. S. Stelle, Class. Quantum Grav. 15, 537 (1998),

arXiv:hep-th/9708109.

36. A. Marrani, F. Riccioni and L. Romano, Int. J. Mod. Phys. A 31, 1550218 (2016),

arXiv:1501.06895 [hep-th].

37. S. Ferrara and M. Gunaydin, Int. J. Mod. Phys. A 13, 2075 (1998), arXiv:hep-th/

9708025.

38. L. Borsten, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, Phys. Rev. D 85,

086002 (2012), arXiv:1108.0424 [hep-th].

39. T. Springer and F. D. Veldkamp, Octonions, Jordan Algebras and Exceptional Groups

(Springer, 2013).

40. B. de Wit, A. K. Tollsten and H. Nicolai, Nucl. Phys. B 392, 3 (1993), arXiv:hep-th/

9208074.

1750120-35

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
7.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

U
R

O
PE

A
N

 O
R

G
A

N
IZ

A
T

IO
N

 F
O

R
 N

U
C

L
E

A
R

 R
E

SE
A

R
C

H
 (

C
E

R
N

) 
on

 0
7/

19
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

https://arxiv.org/abs/0705.0752
https://arxiv.org/abs/0705.1304
https://arxiv.org/abs/hep-th/0401196
https://arxiv.org/abs/0801.2763
https://arxiv.org/abs/0711.2035
https://arxiv.org/abs/math/0001083
https://arxiv.org/abs/1208.6153
https://arxiv.org/abs/hep-th/0304206
https://arxiv.org/abs/hep-th/0309198
https://arxiv.org/abs/1206.1255
https://arxiv.org/abs/1012.5797
https://arxiv.org/abs/0805.2573
https://arxiv.org/abs/0805.2573
https://arxiv.org/abs/hep-th/9909099
https://arxiv.org/abs/hep-th/9708109
https://arxiv.org/abs/1501.06895
https://arxiv.org/abs/hep-th/9708025
https://arxiv.org/abs/hep-th/9708025
https://arxiv.org/abs/1108.0424
https://arxiv.org/abs/hep-th/9208074
https://arxiv.org/abs/hep-th/9208074


July 17, 2017 11:21 IJMPA S0217751X17501202 page 36

A. Marrani et al.

41. P. Henry-Labordere, B. Julia and L. Paulot, J. High Energy Phys. 0204, 049 (2002),

arXiv:hep-th/0203070.

42. A. Iqbal, A. Neitzke and C. Vafa, Adv. Theor. Math. Phys. 5, 769 (2002),

arXiv:hep-th/0111068.

43. P. C. West, Class. Quantum Grav. 20, 2393 (2003), arXiv:hep-th/0212291.

44. M. Goroff and J. H. Schwarz, Phys. Lett. B 127, 61 (1983).

45. P. Henry-Labordere, B. Julia and L. Paulot, J. High Energy Phys. 0304, 060 (2003),

arXiv:hep-th/0212346.

46. M. Gunaydin, K. Koepsell and H. Nicolai, Commun. Math. Phys. 221, 57 (2001),

arXiv:hep-th/0008063.

47. M. Gunaydin and O. Pavlyk, Adv. Theor. Math. Phys. 13, 1895 (2009), arXiv:0904.

0784 [hep-th].

48. S. Ferrara and J. M. Maldacena, Class. Quantum Grav. 15, 749 (1998), arXiv:hep-th/

9706097.

49. L. Borsten, D. Dahanayake, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, Class.

Quantum Grav. 27, 185003 (2010), arXiv:1002.4223 [hep-th].

50. S. Ferrara and M. Gunaydin, Nucl. Phys. B 759, 1 (2006), arXiv:hep-th/0606108.

51. L. Borsten, M. J. Duff, S. Ferrara and A. Marrani, Class. Quantum Grav. 30, 235003

(2013), arXiv:1212.3254 [hep-th].

52. G. Bossard, J. High Energy Phys. 1205, 113 (2012), arXiv:1203.0530 [hep-th].

53. C. Gao, X. Chen and Y. G. Shen, Gen. Relativ. Gravit. 48, 11 (2016), arXiv:1501.

03220 [gr-qc].

54. H. Freudenthal, Nederl. Akad. Wetensch. Proc. Ser. A 57, 218 (1954).

55. H. Freudenthal, Nederl. Akad. Wetensch. Proc. Ser. A 62, 466 (1959).

56. K. Meyberg, Nederl. Akad. Wetensch. Proc. Ser. A 71, 162 (1968).

57. M. Sato and T. Kimura, Nagoya Math. J. 65, 1 (1977).

58. V. G. Kac, J. Algebra 64, 190 (1980).

59. H. Bermudez, S. Garibaldi and V. Larsen, Trans. Am. Math. Soc. 366, 4755 (2014),

arXiv:1204.2840 [math.RT].

60. S. Garibaldi and R. Guralnick, Forum Math. Pi 3, e3 (2015), arXiv:1309.6611

[math.GR].

61. J. C. Ferrar, Trans. Am. Math. Soc. 174, 313 (1972).

62. S. Krutelevich, J. Algebra 314, 924 (2007), arXiv:math/0411104.

63. A. Marrani, G. Pradisi, F. Riccioni and L. Romano, in preparation.

64. M. Gunaydin, Springer Proc. Phys. 134, 31 (2010), arXiv:0908.0374 [hep-th].

65. M. Bianchi and S. Ferrara, J. High Energy Phys. 0802, 054 (2008), arXiv:0712.2976

[hep-th].

66. C. Angelantonj and A. Sagnotti, Phys. Rep. 371, 1 (2002) [Erratum: ibid. 376, 407

(2003)], arXiv:hep-th/0204089.

67. R. Rohm, Nucl. Phys. B 237, 553 (1984).

68. C. Kounnas and M. Porrati, Nucl. Phys. B 310, 355 (1988).

69. E. Kiritsis and C. Kounnas, Nucl. Phys. B 503, 117 (1997), arXiv:hep-th/9703059.

70. I. Antoniadis, E. Dudas and A. Sagnotti, Nucl. Phys. B 544, 469 (1999), arXiv:hep-th/

9807011.

71. I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Nucl. Phys. B 553, 133

(1999), arXiv:hep-th/9812118.

72. C. Vafa and E. Witten, Nucl. Phys. B (Proc. Suppl.) 46, 225 (1996), arXiv:hep-th/

9507050.

73. A. Sen and C. Vafa, Nucl. Phys. B 455, 165 (1995), arXiv:hep-th/9508064.

1750120-36

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
7.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

U
R

O
PE

A
N

 O
R

G
A

N
IZ

A
T

IO
N

 F
O

R
 N

U
C

L
E

A
R

 R
E

SE
A

R
C

H
 (

C
E

R
N

) 
on

 0
7/

19
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

https://arxiv.org/abs/hep-th/0203070
https://arxiv.org/abs/hep-th/0111068
https://arxiv.org/abs/hep-th/0212291
https://arxiv.org/abs/hep-th/0212346
https://arxiv.org/abs/hep-th/0008063
https://arxiv.org/abs/0904.0784
https://arxiv.org/abs/0904.0784
https://arxiv.org/abs/hep-th/9706097
https://arxiv.org/abs/hep-th/9706097
https://arxiv.org/abs/1002.4223
https://arxiv.org/abs/hep-th/0606108
https://arxiv.org/abs/1212.3254
https://arxiv.org/abs/1203.0530
https://arxiv.org/abs/1501.03220
https://arxiv.org/abs/1501.03220
https://arxiv.org/abs/1204.2840
https://arxiv.org/abs/1309.6611
https://arxiv.org/abs/math/0411104
https://arxiv.org/abs/0908.0374
https://arxiv.org/abs/0712.2976
https://arxiv.org/abs/hep-th/0204089
https://arxiv.org/abs/hep-th/9703059
https://arxiv.org/abs/hep-th/9807011
https://arxiv.org/abs/hep-th/9807011
https://arxiv.org/abs/hep-th/9812118
https://arxiv.org/abs/hep-th/9507050
https://arxiv.org/abs/hep-th/9507050
https://arxiv.org/abs/hep-th/9508064


July 17, 2017 11:21 IJMPA S0217751X17501202 page 37

Nonsupersymmetric magic theories and Ehlers truncations

74. Y. Dolivet, B. Julia and C. Kounnas, J. High Energy Phys. 0802, 097 (2008),

arXiv:0712.2867 [hep-th].

75. I. Antoniadis, C. P. Bachas and C. Kounnas, Nucl. Phys. B 289, 87 (1987).

76. H. Kawai, D. C. Lewellen and S. H. H. Tye, Nucl. Phys. B 288, 1 (1987).

77. C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, Phys. Lett. B

387, 743 (1996), arXiv:hep-th/9607229.

1750120-37

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
7.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

U
R

O
PE

A
N

 O
R

G
A

N
IZ

A
T

IO
N

 F
O

R
 N

U
C

L
E

A
R

 R
E

SE
A

R
C

H
 (

C
E

R
N

) 
on

 0
7/

19
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

https://arxiv.org/abs/0712.2867
https://arxiv.org/abs/hep-th/9607229

	Introduction
	Nonsupersymmetric theories based on Cs and Hs
	Ehlers SL(n,R) Truncations of Maximal Supergravity in any Dimension
	Ehlers SL(n,R) Truncations: Nonmaximal Cases
	Black Holes and Duality Orbits
	Discussion and Conclusions

