We present a theory of molecular motors based on the Ehrenfest dynamics for nuclear coordinates and the adiabatic limit of the Kadanoff-Baym equations for current-induced forces. Electron-electron interactions can be systematically included through many-body perturbation theory, making the nonequilibrium Green's function formulation suitable for first-principles treatments of realistic junctions. The method is benchmarked against simulations via real-time Kadanoff-Baym equations, finding an excellent agreement. Results on a paradigmatic model of a molecular motor show that correlations can change dramatically the physical scenario by, e.g., introducing a sizable damping in self-sustained van der Pol oscillations.
Hopjan, M., Stefanucci, G., and Perfetto, E., and Verdozzi, C. (2018). Molecular junctions and molecular motors: Including Coulomb repulsion in electronic friction using nonequilibrium Green's functions. PHYSICAL REVIEW. B, 98(4) [10.1103/PhysRevB.98.041405].
Molecular junctions and molecular motors: Including Coulomb repulsion in electronic friction using nonequilibrium Green's functions
Stefanucci G.;and Perfetto E;
2018-01-01
Abstract
We present a theory of molecular motors based on the Ehrenfest dynamics for nuclear coordinates and the adiabatic limit of the Kadanoff-Baym equations for current-induced forces. Electron-electron interactions can be systematically included through many-body perturbation theory, making the nonequilibrium Green's function formulation suitable for first-principles treatments of realistic junctions. The method is benchmarked against simulations via real-time Kadanoff-Baym equations, finding an excellent agreement. Results on a paradigmatic model of a molecular motor show that correlations can change dramatically the physical scenario by, e.g., introducing a sizable damping in self-sustained van der Pol oscillations.File | Dimensione | Formato | |
---|---|---|---|
PR-B98-041405-2018.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.