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Molecular junctions and molecular motors: Including Coulomb repulsion in electronic friction
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We present a theory of molecular motors based on the Ehrenfest dynamics for nuclear coordinates and the
adiabatic limit of the Kadanoff-Baym equations for current-induced forces. Electron-electron interactions can
be systematically included through many-body perturbation theory, making the nonequilibrium Green’s function
formulation suitable for first-principles treatments of realistic junctions. The method is benchmarked against
simulations via real-time Kadanoff-Baym equations, finding an excellent agreement. Results on a paradigmatic
model of a molecular motor show that correlations can change dramatically the physical scenario by, e.g.,
introducing a sizable damping in self-sustained van der Pol oscillations.
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I. INTRODUCTION

Ions in a conducting interconnect can drift away from their
equilibrium position due to current-induced forces [1–3]. This
fact degrades technological performance via, e.g., heating and
electromigration in semiconductor integrated circuits [4] and
nanowires [5]. However, as first envisioned by Sorbello [6],
current-induced forces can also be turned to one’s advantage,
with the electrons-to-nuclei energy transfer used to move atoms
in orbits (molecular motors) and with prospects of high payoffs
for nanotechnology.

Envisioning nanoscale devices converting electrical current
into mechanical work is attracting a growing interest. After
the proposal in Ref. [6], a number of theoretical investigations
emerged in steady-state [7–19] and real-time [20–25] transport
to understand and possibly manipulate the current-induced
forces. Their nonconservative character was pointed out in
several studies [26–28]. It was also pointed out that these
forces are of two types, i.e., frictionlike [29–31] and Lorentz-
like [31,32]. Under general nonequilibrium conditions the
friction force can be negative and responsible for van der Pol
oscillations of the nuclear coordinates [29,33–35], runaway
modes [22,32], or heating [36].

Interestingly enough, electronic correlations in these sit-
uations (and thus in concept protocols of molecular motors)
have not been addressed until very recently. A first step was
taken by Dou et al. [37], with a general formulation in terms
of N -particle Green’s functions, with N being the number of
electrons in the system (see also Refs. [38,39] for subsequent
discussions). Afterwards, an expression for the friction force
was derived via a generalized master equation in the Coulomb
blockade regime [40].

A fundamental merit of these two pioneering works is to
bring the issue of electronic correlations in molecular motors

into the spotlight. However, it is also the case that, at present,
a general approach suitable for calculations of nuclear motion
in realistic junctions is still lacking. Also, an assessment of
the importance of second- and higher-order corrections in the
nuclear velocities of the current-induced forces [22,41–43] has
not yet been made.

Motivated by these considerations, we derive here a for-
mula of current-induced forces in terms of the one-particle
steady-state nonequilibrium Green’s function (ssGF). The
main advantage of the ssGF formulation is that electronic
correlations can be systematically and self-consistently in-
cluded through diagrammatic approximations to the many-
body self-energy, particularly suitable in first-principles ap-
proaches. As in previous noninteracting formulations, we
account only for the lowest-order correction in the nuclear
velocities. The impact of higher-order corrections is assessed
through benchmarks against mixed quantum-classical studies
based on Ehrenfest dynamics (ED) for the nuclei and either
the two-times Kadanoff-Baym equations [44–51] (KBEs) or
the one-time generalized Kadanoff-Baym ansatz [52] (GKBA)
for the electronic part. We find that the ssGF scheme is
quantitatively accurate and numerically highly efficient. The
main physical result of our investigations is that electronic
correlations hinder the emergence of negative friction.

II. NONADIABATIC EHRENFEST DYNAMICS

We consider a metal-device-metal junction and a set of
classical nuclear coordinates x = {x1,x2, . . .} coupled to elec-
trons in the device. The junction is exposed to time-dependent
gate voltages and biases. For heavy nuclear masses M =
{M1,M2, . . . } an expansion of the nuclear wave functions
around the classical trajectories yields [29,41] (T labels time)

Mνd
2xν/dT 2 = −∂xν

Ucl(x) + F el
ν [x,T ] − ξν, (1)
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where Ucl(x) is the classical potential of the nuclei, F el
ν [x,T ]

is the force exerted by the electrons, and ξν is a stochastic
contribution [29,31,33,34,41]. For ξν = 0 the Langevin-type
Eq. (1) reduces to the ED equation. In the following, the
stochastic field will be neglected.

The most general device Hamiltonian can be written as

HC(x,T ) =
∑
ij,σ

hij (x,T )c†iσ cjσ + Hint, (2)

where c
†
iσ creates an electron with spin projection σ on the ith

localized orbital of the device region. The term Hint is inde-
pendent of x and accounts for electron-electron interactions.
The electronic force then reads

F el
ν [x(T ),T ] = −〈∂xν

HC(x,T )〉∣∣x=x(T )

= −
∑
ij,σ

ρji(T )∂xν
hij (x(T ),T ), (3)

where ρji(T ) is the electronic one-particle density matrix.
In general, ρ depends on the history of the system, and so
does the electronic force via ρ, as is evident from Eq. (3).
This is generally referred to as “non-Markovian dynamics.”
Below, we discuss two ways of how to perform the time
evolution of the electronic density matrix which includes
the memory effects, both formulated in the nonequilibrium
Green’s function (NEGF) framework.

A. Kadanoff-Baym equations

In the NEGF formalism [46–48], the density matrix ρ can
be calculated from the equal-time lesser Green’s function
according to ρ(T ) = −iG<(T ,T +). The double-time lesser
Green’s function G<(t,t ′) is obtained from the contour Green’s
function G(z,z′) by setting z = t on the forward branch and
z′ = t ′ on the backward branch of the Keldysh contour γ

[44–49]. The contour time evolution is governed by the
equation of motion [46–48]

[i∂z − hHF(x(z),z)]G(z,z′)

= δ(z,z′)1 +
∫

γ

(	corr + 	emb)(z,z̄)G(z̄,z′)dz̄, (4)

where hHF = h + 	HF is the sum of the single-particle Hamil-
tonian and Hartree-Fock (HF) self-energy. The self-energy
	corr accounts for electronic correlations beyond Hartree-Fock
whereas 	emb is the standard embedding self-energy. A similar
equation holds for z′. Choosing z and z′ on different branches
and breaking the contour integral into real-time integrals, one
obtains the KBEs [see Supplemental Material (SM) [53]]. They
are coupled to the nuclear ED through Eq. (1), resulting in
a scheme that in the following we refer to as ED+KBE. In
this Rapid Communication, we solve the ED+KBE using the
second Born approximation (2BA) to 	corr [54], whose per-
formance has been tested previously (see, e.g., Refs. [49,55]).
The physical picture behind the 2BA is that two electrons, in
addition to experiencing a mean field generated by all other
electrons, can also scatter directly once (see also the SM).

B. Generalized Kadanoff-Baym ansatz

The KBEs scale as N3
T , with NT being the time grid size

[56]. To reduce memory costs, the time propagation can be

directly performed for ρ. Formally, the general exact equation
for ρ can be derived from the KBEs at equal times, i.e., on the
time diagonal t = t ′,

dρ(t)

dt
+ i[hHF(x(t),t),ρ(t)] = −[I (t) + H.c.], (5)

where the collision integral I involves lesser (denoted by “<”)
and greater (denoted by “>”) components of the two-times
functions G, 	corr, and 	emb. To close the equation for ρ, we
make the generalized Kadanoff-Baym ansatz [52],

G<(t,t ′) = −GR(t,t ′)ρ(t ′) + ρ(t)GA(t,t ′), (6)

where a specification for GR/A is needed which, in this Rapid
Communication, is made in terms of the so-called static-
correlation approximation [57] (see also SM for details). When
combining the GKBA with the ED (henceforth referred to
as ED+GKBA), we use the 2BA for 	corr, consistently with
the ED+KBE scheme discussed above. For purely electronic
dynamics, the two schemes were shown to be in good mutual
agreement [57], especially for not too strong interactions.
Finally, one-time ED+GKBA evolution allows for much longer
propagations than the two-time ED+KBE scheme.

III. ADIABATIC EHRENFEST DYNAMICS

As discussed above, in general, electrons and nuclei obey
coupled equations of motion [Eqs. (1) and (4), or Eqs. (1)
and (5)], and memory effects should be taken into account
in the electron dynamics. In this section we show that, under
specific assumptions, a simplification occurs, namely, for slow
nuclear dynamics the equations can be decoupled and one can
propagate only Eq. (1).

If the nuclear velocities ẋ are small, the electronic force
can be expanded up to linear order in ẋ. Additionally, in
the adiabatic limit where the memory effects are negligible,
the coefficients of the expansion can be determined by the
electronic steady state corresponding to the fixed nuclear
position x (also known as the Markovian or nonequilibrium
Born-Oppenheimer assumption). Under these conditions the
electronic force can be divided into two contributions F el ≈
F ss[x] + F fric[x,ẋ], where the first term is the steady-state
force and the second one is the friction+Lorentz-like force.
These forces, known as current-induced forces, are introduced
below in terms of the one-particle steady-state nonequilibrium
Green’s function (ssGF).

A. Current-induced forces

At the steady state, where x is time independent, one
can find the corresponding steady-state Green’s functions Gss
containing information about densities and currents in the
system. The Green’s functions depend only on the frequency ω

and satisfy the steady-state KBE (in matrix form and omitting
the parametric dependence on x),

GR
ss(ω) = 1

ω − hHF − 	R
ss(ω)

,

(7)

G<
ss(ω) = 1

ω − hHF − 	R
ss(ω)

	<
ss (ω)

1

ω − hHF − 	A
ss(ω)

,
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where 	ss is the steady-state value of 	 = 	corr + 	emb. The
lesser steady-state Green’s function G<

ss gives direct access to
the steady-state force,

F ss
ν [x] = +2i

∫
dω

2π
Tr[G<

ss[x](ω)∂xν
h(x)], (8)

while the friction+Lorentz-like force is obtained as

F fric
ν [x,ẋ] = −

∑
μ

ẋμγνμ[x]. (9)

Here, the friction coefficients γνμ are dependent on the param-
eter x through Gss. Explicitly,

γνμ[x] =
∫

dω

2π
Tr

[(
Qμ

(
GR

ss,hHF + 	R
ss,corr,G

<
ss

)

+Qμ

(
G<

ss,hHF + 	A
ss,corr,G

A
ss

)
+Qμ

(
GR

ss,	
<
ss,corr,G

A
ss

))
(∂xν

h)
]
, (10)

where Qμ(a,b,c) = [(∂ωa)(∂xμ
b)c − a(∂xμ

b)(∂ωc)].
The result in Eq. (10) applies to systems with electron-

electron interactions and provides an alternative to the friction
formula in terms of N -particle Green’s functions [37,58].
Furthermore, Eq. (10) directly reduces to previously pub-
lished results in the noninteracting case [33,34,59]. More
important, the advantage of the presented expression for the
friction force is that electronic correlations can be system-
atically and self-consistently included through diagrammatic
approximations [60].

B. Derivation of current-induced forces from KBE

The current-induced forces presented above can be derived
from the nonadiabatic KBE dynamics in the adiabatic limit.
In the following, we briefly discuss the main steps of the
derivation (for the full derivation, see the SM):

(i) We start with the nonadiabatic KBE dynamics where the
electronic evolution is characterized by the two-times Green’s
functions G(t,t ′) and we move to the Wigner representation
G(t,t ′) → G(ω,T ) [65], where T = t+t ′

2 is the center-of-mass
time and ω is the Fourier conjugate of the relative time τ =
t − t ′.

(ii) Under the assumption that the nuclear velocities ẋ are
small we can expand G< and GR in powers of ẋ [66]. To first
order one finds G<(ω,T ) = G<

ss(ω) + i
∑

μ ẋμ(T )μ(ω,T ),
where μ is a complicated function of G<,GR and their deriva-
tives with respect to ω and xμ. This expansion consistently
preserves the general relation G> − G< = GR − GA for any
finite bias [67].

(iii) Subsequently, we invoke the assumption of adiabatic
(Markovian) limit. We evaluate μ at the steady-state Green’s
functions, thus obtaining μ(ω,T ) → μ,ss(ω). Then, we
take into account that ρ(T ) = −i

∫
dω
2π

G<(ω,T ) in Eq. (3).
The integral gives access to the steady-state force and the
friction+Lorentz-like force.

As the nonadiabatic dynamics (ED+KBE or ED+GKBA)
is the starting point to derive the adiabatic dynamics
(ED+ssGF), the former can be used to benchmark the latter in
the adiabatic limit.

The advantage of the ED+ssGF scheme is in its
computational efficiency. Once the values of the steady-state

FIG. 1. Total potential Utot and friction γ in 2BA as function of x

for different interaction strengths U in (a) equilibrium with vc = 0 and
(b) at finite bias VL = −VR = 5 with vc = 1. The system parameters
are g = 1.58, Jc = −3.5, J = 50, and Jtun = −8.66. The inset shows
a dimer (green circles) coupled to leads, the effective energy of sites 1
and 2 (horizontal tracts), and the charge density (lines over the dimer)
for x = 0 (solid lines) and for x > 0 (dashed lines).

and friction force are computed and tabulated (for each x), one
can evolve the nuclear coordinates for any initial condition
using only Eq. (1).

IV. DYNAMICS OF MODEL SYSTEM

We demonstrate the impact of electronic correlations in the
model system originally introduced in Ref. [29], namely, a
dimer that can rigidly oscillate with frequency � between two
leads [see the inset in Fig. 1(a)]. As in Ref. [29], we express all
energies in units of h̄�, times in units of 1/�, and distances
in units of the characteristic harmonic oscillator length l0 =√

h̄/(M�). The dimensionless dimer Hamiltonian reads

HC(x,T ) =
∑

σ

Jc(c†1σ c2σ + H.c.) + vc(T )
∑
iσ

niσ

+ gx
∑

σ

(n1σ − n2σ ) + U
∑

i

ni↑ni↓, (11)

where we added a Hubbard-like interaction (last term) to the
original model. The electron-nuclear coupling has strength g

and describes a dipole-dipole interaction. The dimer is further
connected to a left (L) lead through site 1 and to a right (R)
lead through site 2 with hopping amplitude Jtun. The L/R lead
is a semi-infinite tight-binding chain with nearest-neighbor
hopping integral J and time-dependent on-site energy (bias)
VL/R(T ).

In Fig. 1 we plot the total potential Utot = Ucl + Uss where
Uss = − ∫ x

−∞ F ssdx and friction coefficient γ = γ11, both cal-
culated within the 2BA [54]. In equilibrium, hence VL/R = 0,
the system is symmetric under the inversion of x and so are
the potential and friction [see Fig. 1(a)]. For U = 0 we have
a double minimum in Utot corresponding to the two degen-
erate Peierls-distorted ground states. With increasing U the
repulsive-energy cost of the charge-unbalanced Peierls states
becomes larger than the distortion-energy gain. Consequently,
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FIG. 2. Phase space (p,x) trajectories in ED+GKBA with gate
vc(T ) = θ (T )[1 + sin2( 2π

5 2gT )] and U = 2.5 in the HF and 2B
approximations [time rescaled by 1/(2g)]. The inset (top right) shows
the density of the two sites of the dimer.

Utot develops a single minimum in x = 0 and the charge-
balanced ground state becomes favored. Independently of U ,
the friction remains positive, an exact equilibrium property
correctly captured by our diagrammatic 2BA.

Turning on a gate voltage vc = 1 and a bias VL = −VR = 5
[see Fig. 1(b)], electrons start flowing through the dimer. The
noninteracting formulation predicts self-sustained van der Pol
oscillations [33,34,43] since the minimum in Utot occurs for
values ofx whereγ is negative. Thus, the electrical current acti-
vates an everlasting sloshing motion of the dimer. Electron cor-
relations shift the position of the potential minimum away from
the region γ < 0, thus hindering the van der Pol oscillations.
This effect is even enhanced by the flattening of γ that causes
a shrinking of the region of negative friction. We point out that
the HF approximation, i.e., 	corr = 0, predicts the opposite
behavior. To validate the correctness of the 2BA treatment we
have evaluated γ also within the T -matrix approximation [54]
(TMA), which accounts for multiple scattering of electrons,
and found similar results (see SM).

The differences between the HF and 2BA results are
illustrated in time domain in Fig. 2 using the ED+GKBA
approach. We start from an equilibrium situation and then
switch on a bias VL = −VR = 5 and a gate vc = 1. Then, after
time t = 100, we add a high-frequency time-dependent gate
whose only effect is to modulate the nuclear trajectory; ultrafast
fields have only a minor influence in steering molecular
motors. Notice that, although U/Jc ≈ 0.7 (weakly correlated
regime), the HF and 2BA trajectories are quantitatively very
different.

The effects of Coulomb interactions on the electrome-
chanical energy conversion is investigated in Fig. 3. In the
left panels we consider a steady-state system with a bias
at time t = 0 and then suddenly change the position of the
nuclear coordinate to x = 0.3. No external fields other than
the bias are switched on, so all quantities depend on time
only through x. Simulations are performed with ED+ssGF and
ED+GKBA (the maximum propagation time is too long for
ED+KBE). The nuclear coordinate and site densities show an

1 10 100
time
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ED+GKBA
ED+KBE
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FIG. 3. Comparison between ED+GKBA and ED+ssGF for
nuclear coordinate and dimer densities in the 2B approximation [time
rescaled by 1/(2g)].

excellent agreement between the two schemes up to U = 5.
The real-time simulations confirm the conclusions drawn by
inspection of Fig. 1. The van der Pol oscillations are everlasting
only for U = 0 [Fig. 3(a)]; for U > 0 the dynamics is damped
[Figs. 3(c)–3(e)]. We can estimate the size of the effect
for a normal mode with period T = 2π/� � 101 fs (hence
VL − VR = 10h̄� � 1–10 eV). In this case the average current
through the dimer is in the μA range (which is congruous
for molecular transport) and the amplitude of the sloshing
motion is, from Fig. 3, of the order l0 � 10−1–10−2 Å (we
assumed a dimer of mass M ∼ 25Mproton which is appropriate
for molecules such as, e.g., ethylene). Then, for U = 5h̄� �
(0.1–1) eV, the Coulomb-induced damping occurs on the
picosecond timescale (see also SM for details).

In the right panels of Fig. 3 we explore the performance
of the ED+ssGF scheme for a situation when the system has
not yet attained a steady state. At time t = 0 we switch on
a constant (in time) gate vc = 1 and bias VL = −VR = 5 and
propagate the system using both ED+KBE and ED+GKBA.
After a transient phase [time window (0,20)] we continue
the ED+KBE propagation using the ssGF scheme with the
initial condition given by the ED+KBE value of the nuclear
coordinate at time t = 20. The duration of the transient phase
was chosen to be longer than the tunneling time in order to
wash out the effects of the sudden switch-on of the external
fields.

In the noninteracting case [Fig. 3(b)], the system is in a
strong nonadiabatic regime, and the ssGF densities are largely
deviating from the GKBA densities, especially close to the
maxima of |ẋ|. Nevertheless, the ssGF and GKBA nuclear
coordinates are almost identical. This is a consequence of the
fact that also the density deviations on the two sites are almost
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identical, and hence the electronic force (which depends on the
densities difference) is not affected by these deviations.

For U = 5 [Fig. 3(d)], the system is in the adiabatic regime
after the transient, and we observe a good agreement between
the ED+GKBA and the ED+ssGF dynamics. To appreciate
the importance of nonadiabatic effects we also plot the result
of the pure ED+ssGF dynamics (red line). During the transient
ED+ssGF is not expected to work since we are not close
to the KBE steady state. Interestingly, however, the impact
of the sudden switch-on is strong also at long times; the
ED+ssGF nuclear coordinate disagrees considerably from that
of ED+GKBA. Increasing the interaction further [Fig. 3(f)],
the ED+GKBA dynamics starts to deviate from the ED+KBE
dynamics, with a sizable overestimation of the amplitude of
the oscillations. This is again a consequence of the failure of
the GKBA for too strong U ’s.

V. CONCLUSIONS

We introduced a theoretical description of molecular motors
in molecular junctions, based on a coupled quantum-classical
approach, with nuclei treated within the Ehrenfest dynamics
(ED), and electrons within the two-times Kadanoff-Baym
equations (KBEs) or the one-time generalized Kadanoff-Baym
ansatz (GKBA).

In the adiabatic limit of these descriptions, we used the
steady-state nonequilibrium Green’s function (ssGF) to derive
an expression for the electronic friction coefficient which
includes correlation effects due to Coulomb repulsions among
the electrons. The adiabatic assumption allows for integrat-
ing out the electronic degrees of freedom, thus providing a
description of the nuclear dynamics in terms of forces that can
be calculated and stored in advance. We demonstrated that the

proposed ED+ssGF approach is accurate and computationally
more efficient than ED+KBE and even ED+GKBA.

We considered the paradigmatic Hubbard dimer to inves-
tigate the role of correlations and performed calculations in
the mean-field HF approximation as well as in the correlated
2BA and TMA to treat the Coulomb interaction. Numerical
evidence indicates that the HF approximation is not accurate
enough and that correlation effects can change dramatically the
physical picture. In fact, in a broad range of model parameters
we found that correlations hinder the emergence of regions of
negative friction and strongly damp the nuclear motion. Our
results also suggest that fast driving fields play a minor role in
designing molecular motors.

Of course, the investigation of electronic correlations in
molecular motors is still in its infancy. The proposed ED+ssGF
approach allows for standard diagrammatic approximations
and is therefore well suited for first-principles treatments of
realistic setups. We envisage its use to gain insight into molec-
ular devices, and hopefully to put technological applications
at a closer reach.
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