The Undecided-State Dynamics is a well-known protocol for distributed consensus. We analyze it in the parallel PULL communication model on the complete graph with n nodes for the binary case (every node can either support one of two possible colors, or be in the undecided state). An interesting open question is whether this dynamics is an efficient Self-Stabilizing protocol, namely, starting from an arbitrary initial configuration, it reaches consensus quickly (i.e., within a polylogarithmic number of rounds). Previous work in this setting only considers initial color configurations with no undecided nodes and a large bias (i.e., Theta(n)) towards the majority color. In this paper we present an unconditional analysis of the Undecided-State Dynamics that answers to the above question in the affirmative. We prove that, starting from any initial configuration, the process reaches a monochromatic configuration within O(log n) rounds, with high probability. This bound turns out to be tight. Our analysis also shows that, if the initial configuration has bias Omega(sqrt(n log n)), then the dynamics converges toward the initial majority color, with high probability.
Clementi, A., Ghaffari, M., Guala', L., Natale, E., Pasquale, F., Scornavacca, G. (2018). A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors. In International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik [10.4230/lipics.mfcs.2018.28].
A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors
Andrea Clementi;Luciano Gualà;Francesco Pasquale;
2018-08-01
Abstract
The Undecided-State Dynamics is a well-known protocol for distributed consensus. We analyze it in the parallel PULL communication model on the complete graph with n nodes for the binary case (every node can either support one of two possible colors, or be in the undecided state). An interesting open question is whether this dynamics is an efficient Self-Stabilizing protocol, namely, starting from an arbitrary initial configuration, it reaches consensus quickly (i.e., within a polylogarithmic number of rounds). Previous work in this setting only considers initial color configurations with no undecided nodes and a large bias (i.e., Theta(n)) towards the majority color. In this paper we present an unconditional analysis of the Undecided-State Dynamics that answers to the above question in the affirmative. We prove that, starting from any initial configuration, the process reaches a monochromatic configuration within O(log n) rounds, with high probability. This bound turns out to be tight. Our analysis also shows that, if the initial configuration has bias Omega(sqrt(n log n)), then the dynamics converges toward the initial majority color, with high probability.File | Dimensione | Formato | |
---|---|---|---|
clementi2018tight.pdf
solo utenti autorizzati
Licenza:
Non specificato
Dimensione
627.99 kB
Formato
Adobe PDF
|
627.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.