Botnets are considered one of the most dangerous species of network-based attack today because they involve the use of very large coordinated groups of hosts simultaneously. The behavioral analysis of computer networks is at the basis of the modern botnet detection methods, in order to intercept traffic generated by malwares for which signatures do not exist yet. Defining a pattern of features to be placed at the basis of behavioral analysis, puts the emphasis on the quantity and quality of information to be caught and used to mark data streams as normal or abnormal. The problem is even more evident if we consider extensive computer networks or clouds. With the present paper we intend to show how heuristics applied to large-scale proxy logs, considering a typical phase of the life cycle of botnets such as the search for C&C Servers through AGDs (Algorithmically Generated Domains), may provide effective and extremely rapid results. The present work will introduce some novel paradigms. The first is that some of the elements of the supply chain of botnets could be completed without any interaction with the Internet, mostly in presence of wide computer networks and/or clouds. The second is that behind a large number of workstations there are usually "human beings" and it is unlikely that their behaviors will cause marked changes in the interaction with the Internet in a fairly narrow time frame. Finally, AGDs can highlight, at the moment, common lexical features, detectable quickly and without using any black/white list.

Bottazzi, G., Italiano, G. (2015). Fast mining of large-scale logs for Botnet detection: a field study. In Proceedings - 15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2015 and 13th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2015 (pp.1989-1996). Institute of Electrical and Electronics Engineers Inc. [10.1109/CIT/IUCC/DASC/PICOM.2015.295].

Fast mining of large-scale logs for Botnet detection: a field study

Bottazzi, G;Italiano, GF
2015-01-01

Abstract

Botnets are considered one of the most dangerous species of network-based attack today because they involve the use of very large coordinated groups of hosts simultaneously. The behavioral analysis of computer networks is at the basis of the modern botnet detection methods, in order to intercept traffic generated by malwares for which signatures do not exist yet. Defining a pattern of features to be placed at the basis of behavioral analysis, puts the emphasis on the quantity and quality of information to be caught and used to mark data streams as normal or abnormal. The problem is even more evident if we consider extensive computer networks or clouds. With the present paper we intend to show how heuristics applied to large-scale proxy logs, considering a typical phase of the life cycle of botnets such as the search for C&C Servers through AGDs (Algorithmically Generated Domains), may provide effective and extremely rapid results. The present work will introduce some novel paradigms. The first is that some of the elements of the supply chain of botnets could be completed without any interaction with the Internet, mostly in presence of wide computer networks and/or clouds. The second is that behind a large number of workstations there are usually "human beings" and it is unlikely that their behaviors will cause marked changes in the interaction with the Internet in a fairly narrow time frame. Finally, AGDs can highlight, at the moment, common lexical features, detectable quickly and without using any black/white list.
15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2015 and 13th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2015
gbr
2015
IEEE Computer Society
Rilevanza internazionale
2015
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
English
AGD; Botnet; heuristics; logs; mining; proxy; information systems; artificial intelligence; computer networks and communications
Intervento a convegno
Bottazzi, G., Italiano, G. (2015). Fast mining of large-scale logs for Botnet detection: a field study. In Proceedings - 15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2015 and 13th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2015 (pp.1989-1996). Institute of Electrical and Electronics Engineers Inc. [10.1109/CIT/IUCC/DASC/PICOM.2015.295].
Bottazzi, G; Italiano, G
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/201144
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 0
social impact