The aim of this paper is to introduce new algorithms for the oil spill detection taking fully advantage of the polarimetric and textural features contained in new generation SAR data such as those provided by Radarsat-2 and COSMO-SkyMed missions. The SAR information is exploited using a new statistical decomposition method based on AANN. Thanks to the AANN the original image is represented in terms of Nonlinear principal components (NLPC). The oil spill detection procedure is then directly applied to the new generated components

DEL FRATE, F., Latini, D., Scappiti, V. (2017). On Neural Networks Algorithms for Oil Spill Detetction when Applied to C- and X-Band SAR. In Proceedings of International Geoscience and Remote Sensing Symposium. IEEE [10.1109/IGARSS.2017.8128185].

On Neural Networks Algorithms for Oil Spill Detetction when Applied to C- and X-Band SAR

Fabio Del Frate;Daniele Latini;SCAPPITI, VALENTINA
2017-01-01

Abstract

The aim of this paper is to introduce new algorithms for the oil spill detection taking fully advantage of the polarimetric and textural features contained in new generation SAR data such as those provided by Radarsat-2 and COSMO-SkyMed missions. The SAR information is exploited using a new statistical decomposition method based on AANN. Thanks to the AANN the original image is represented in terms of Nonlinear principal components (NLPC). The oil spill detection procedure is then directly applied to the new generated components
International Geoscience and Remote Sensing Symposium
Fort Worth, Texas, USA
2017
IEEE
Rilevanza internazionale
lug-2017
2017
Settore ING-INF/02 - CAMPI ELETTROMAGNETICI
English
https://ieeexplore.ieee.org/document/8128185/
Intervento a convegno
DEL FRATE, F., Latini, D., Scappiti, V. (2017). On Neural Networks Algorithms for Oil Spill Detetction when Applied to C- and X-Band SAR. In Proceedings of International Geoscience and Remote Sensing Symposium. IEEE [10.1109/IGARSS.2017.8128185].
DEL FRATE, F; Latini, D; Scappiti, V
File in questo prodotto:
File Dimensione Formato  
0005249_oilspill.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 374.59 kB
Formato Adobe PDF
374.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/200332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact