Presently, there is a growing need for information suitable to effectively characterize the Urban Energy Budget (UEB) and, hence, to properly estimate the magnitude of the anthropogenic heat flux QF. Indeed, a precise knowledge of QF - whose implications for urban planners are still prone to large uncertainties - is fundamental for implementing effective strategies to improve thermal comfort and energy efficiency. To address this challenging issue, the Horizon 2020 URBANFLUXES project aims at developing a novel methodology for accurately estimating the different terms of the UEB based on the use of Earth Observation (EO) data and, hence, at reliably characterizing the QF spatiotemporal patterns and its implications on urban climate. In this paper, we aim at giving an overview of the EO-based products which have been identified as the most useful in the framework of the considered study. In particular, the suite which has been implemented so far in the first phase of the project includes biophysical parameters, morphology parameters as well as land-cover maps
Marconcini, M., Heldens, W., DEL FRATE, F., Latini, D., Mitraka, Z., Lindberg, F. (2017). EO-based Products in Support of Urban Heat Fluxes Estimation. In Proceedings of the Joint Urban Remote Sensing Event. IEEE [10.1109/JURSE.2017.7924592].
EO-based Products in Support of Urban Heat Fluxes Estimation
Fabio Del Frate;Daniele Latini;Zinovia Mitraka;
2017-01-01
Abstract
Presently, there is a growing need for information suitable to effectively characterize the Urban Energy Budget (UEB) and, hence, to properly estimate the magnitude of the anthropogenic heat flux QF. Indeed, a precise knowledge of QF - whose implications for urban planners are still prone to large uncertainties - is fundamental for implementing effective strategies to improve thermal comfort and energy efficiency. To address this challenging issue, the Horizon 2020 URBANFLUXES project aims at developing a novel methodology for accurately estimating the different terms of the UEB based on the use of Earth Observation (EO) data and, hence, at reliably characterizing the QF spatiotemporal patterns and its implications on urban climate. In this paper, we aim at giving an overview of the EO-based products which have been identified as the most useful in the framework of the considered study. In particular, the suite which has been implemented so far in the first phase of the project includes biophysical parameters, morphology parameters as well as land-cover mapsFile | Dimensione | Formato | |
---|---|---|---|
07924592.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.