We present RDCL 3D, a “model agnostic” web framework for the design and composition of NFV services and components. The framework allows editing and validating the descriptors of services and components both textually and graphically and supports the interaction with external orchestrators or with deployment and execution environments. RDCL 3D is open source and designed with a modular approach, allowing developers to “plug in” the support for new models. We describe several advances with respect to the NFV state of the art, which have been implemented with RDCL 3D. We have integrated in the platform the latest ETSI NFV ISG model specifications for which no parsers/validators were available. We have also included in the platform the support for OASIS TOSCA models, reusing existing parsers. Then we have considered the modelling of components in a modular software router (Click), which goes beyond the traditional scope of NFV. We have further developed this approach by combining traditional NFV components (Virtual Network Functions) and Click elements in a single model. Finally, we have considered the support of this solution using the Unikernels virtualization technology.
Salsano, S., Lombardo, F., Pisa, C., Greto, P., Blefari-Melazzi, N. (2017). RDCL 3D, a model agnostic web framework for the design and composition of NFV services. In IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN) (pp.216-222). IEEE [10.1109/NFV-SDN.2017.8169882].
RDCL 3D, a model agnostic web framework for the design and composition of NFV services
Salsano S.;Pisa C.;Blefari-Melazzi N.
2017-01-01
Abstract
We present RDCL 3D, a “model agnostic” web framework for the design and composition of NFV services and components. The framework allows editing and validating the descriptors of services and components both textually and graphically and supports the interaction with external orchestrators or with deployment and execution environments. RDCL 3D is open source and designed with a modular approach, allowing developers to “plug in” the support for new models. We describe several advances with respect to the NFV state of the art, which have been implemented with RDCL 3D. We have integrated in the platform the latest ETSI NFV ISG model specifications for which no parsers/validators were available. We have also included in the platform the support for OASIS TOSCA models, reusing existing parsers. Then we have considered the modelling of components in a modular software router (Click), which goes beyond the traditional scope of NFV. We have further developed this approach by combining traditional NFV components (Virtual Network Functions) and Click elements in a single model. Finally, we have considered the support of this solution using the Unikernels virtualization technology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.