We study a volume preserving curvature flow of convex hypersurfaces, driven by a power of the k-th elementary symmetric polynomial in the principal curvatures. Unlike most of the previous works on related problems, we do not require assumptions on the curvature pinching of the initial datum. We prove that the solution exists for all times and that the speed remains bounded and converges to a constant in an integral norm. In the case of the volume preserving scalar curvature flow, we can prove that the hypersurfaces converge smoothly to a round sphere.

Bertini, M.c., Sinestrari, C. (2018). Volume preserving flow by powers of symmetric polynomials in the principal curvatures. MATHEMATISCHE ZEITSCHRIFT, 289(3-4), 1219-1236 [10.1007/s00209-017-1995-8].

Volume preserving flow by powers of symmetric polynomials in the principal curvatures

Sinestrari, Carlo
2018-01-01

Abstract

We study a volume preserving curvature flow of convex hypersurfaces, driven by a power of the k-th elementary symmetric polynomial in the principal curvatures. Unlike most of the previous works on related problems, we do not require assumptions on the curvature pinching of the initial datum. We prove that the solution exists for all times and that the speed remains bounded and converges to a constant in an integral norm. In the case of the volume preserving scalar curvature flow, we can prove that the hypersurfaces converge smoothly to a round sphere.
2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
http://link.springer.com/journal/209
Bertini, M.c., Sinestrari, C. (2018). Volume preserving flow by powers of symmetric polynomials in the principal curvatures. MATHEMATISCHE ZEITSCHRIFT, 289(3-4), 1219-1236 [10.1007/s00209-017-1995-8].
Bertini, Mc; Sinestrari, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
10.1007_s00209-017-1995-8.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 695.11 kB
Formato Adobe PDF
695.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/197924
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact