We consider a convex Euclidean hypersurface that evolves by a volume- or area-preserving flow with speed given by a general nonhomogeneous function of the mean curvature. For a broad class of possible speed functions, we show that any closed convex hypersurface converges to a round sphere. The proof is based on the monotonicity of the isoperimetric ratio, which allows to control the inner radius and outer radius of the hypersurface and to deduce uniform bounds on the curvature by maximum principle arguments.
Bertini, M.c., Sinestrari, C. (2018). Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces. ANNALI DI MATEMATICA PURA ED APPLICATA, 197(4), 1295-1309 [10.1007/s10231-018-0725-0].
Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces
Sinestrari, Carlo
2018-01-01
Abstract
We consider a convex Euclidean hypersurface that evolves by a volume- or area-preserving flow with speed given by a general nonhomogeneous function of the mean curvature. For a broad class of possible speed functions, we show that any closed convex hypersurface converges to a round sphere. The proof is based on the monotonicity of the isoperimetric ratio, which allows to control the inner radius and outer radius of the hypersurface and to deduce uniform bounds on the curvature by maximum principle arguments.File | Dimensione | Formato | |
---|---|---|---|
10.1007_s10231-018-0725-0.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
712.08 kB
Formato
Adobe PDF
|
712.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.