Initially identified as an inhibitor of transforming growth factor (TGF)-β mainly owing to its ability to bind TGF-β receptor type I and abrogate TGF-β-driven signaling, Smad7 can interact with additional intracellular proteins and regulate TGF-β-independent pathways, thus having a key role in the control of neoplastic processes in various organs. Genome-wide association studies have shown that common alleles of Smad7 influence the risk of colorectal cancer (CRC), even though the contribution of Smad7 in colon carcinogenesis is not fully understood. In this study, we assessed the expression and role of Smad7 in human and mouse models of sporadic CRC. We document a significant increase of Smad7 in human CRC relative to the surrounding nontumor tissues and show that silencing of Smad7 inhibits the growth of CRC cell lines both in vitro and in vivo after transplantation into immunodeficient mice. Knockdown of Smad7 results in enhanced phosphorylation of the cyclin-dependent kinase (CDK)2, accumulation of CRC cells in S phase and enhanced cell death. Smad7-deficient CRC cells have lower levels of CDC25A, a phosphatase that dephosphorylates CDK2, and hyperphosphorylated eukaryotic initiation factor 2 (eIF2)α, a negative regulator of CDC25 protein translation. Consistently, knockdown of Smad7 associates with inactivation of eIF2α, lower CDC25A expression and diminished fraction of proliferating cells in human CRC explants, and reduces the number of intestinal tumors in Apc(min/+) mice. Altogether, these data support a role for Smad7 in sustaining colon tumorigenesis.

Stolfi, C., De Simone, V., Colantoni, A., Franze, E., Ribichini, E., Fantini, M.c., et al. (2014). A functional role for Smad7 in sustaining colon cancer cell growth and survival. CELL DEATH & DISEASE, 5(2), e1073-e1073 [10.1038/cddis.2014.49].

A functional role for Smad7 in sustaining colon cancer cell growth and survival

Franze E.
;
Fantini M. C.
;
Monteleone I.
;
Sica G.
;
Sileri P.
;
Pallone F.;Monteleone G.
2014-01-01

Abstract

Initially identified as an inhibitor of transforming growth factor (TGF)-β mainly owing to its ability to bind TGF-β receptor type I and abrogate TGF-β-driven signaling, Smad7 can interact with additional intracellular proteins and regulate TGF-β-independent pathways, thus having a key role in the control of neoplastic processes in various organs. Genome-wide association studies have shown that common alleles of Smad7 influence the risk of colorectal cancer (CRC), even though the contribution of Smad7 in colon carcinogenesis is not fully understood. In this study, we assessed the expression and role of Smad7 in human and mouse models of sporadic CRC. We document a significant increase of Smad7 in human CRC relative to the surrounding nontumor tissues and show that silencing of Smad7 inhibits the growth of CRC cell lines both in vitro and in vivo after transplantation into immunodeficient mice. Knockdown of Smad7 results in enhanced phosphorylation of the cyclin-dependent kinase (CDK)2, accumulation of CRC cells in S phase and enhanced cell death. Smad7-deficient CRC cells have lower levels of CDC25A, a phosphatase that dephosphorylates CDK2, and hyperphosphorylated eukaryotic initiation factor 2 (eIF2)α, a negative regulator of CDC25 protein translation. Consistently, knockdown of Smad7 associates with inactivation of eIF2α, lower CDC25A expression and diminished fraction of proliferating cells in human CRC explants, and reduces the number of intestinal tumors in Apc(min/+) mice. Altogether, these data support a role for Smad7 in sustaining colon tumorigenesis.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/18 - CHIRURGIA GENERALE
English
Con Impact Factor ISI
Animals; Cell Survival; Colonic Neoplasms; Cyclin-Dependent Kinase 2; Disease Models, Animal; Eukaryotic Initiation Factor-2; Female; Gene Expression Regulation, Neoplastic; Genes, APC; Genes, RAG-1; Genetic Therapy; HCT116 Cells; HT29 Cells; Hep G2 Cells; Humans; Mice; Mice, Transgenic; Oligonucleotides, Antisense; Phosphorylation; Signal Transduction; Smad7 Protein; Time Factors; Transfection; cdc25 Phosphatases; Cell Proliferation
Stolfi, C., De Simone, V., Colantoni, A., Franze, E., Ribichini, E., Fantini, M.c., et al. (2014). A functional role for Smad7 in sustaining colon cancer cell growth and survival. CELL DEATH & DISEASE, 5(2), e1073-e1073 [10.1038/cddis.2014.49].
Stolfi, C; De Simone, V; Colantoni, A; Franze, E; Ribichini, E; Fantini, Mc; Caruso, R; Monteleone, I; Sica, G; Sileri, P; Macdonald, Tt; Pallone, F; Monteleone, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/197123
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 58
social impact