Within the quantum function algebra F_q[GL_n], we study the subset F'_q[GL_n]— introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217–266] — of all elements of F_q[GL_n] which are Z[q,q^{−1}]-valued when paired with U'_q(gln), the unrestricted Z[q,q^{−1}]-integral form of U_q(gl_n) introduced by De Concini, Kac and Procesi. In particular we obtain a presentation of it by generators and relations, and a PBW-like theorem. Moreover, we give a direct proof that F'_q[GL_n] is a Hopf subalgebra of F_q[GL_n], and that F'_1[GL_n] - i.e., the specialization of F'_q[GL_n] at q=1 - is isomorphic to U(gl_n^*). We describe explicitly its specializations at roots of 1, say ε, and the associated quantum Frobenius (epi)morphism from F'_ε[GL_n] to F'_1[GL_n], also introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217–266]. The same analysis is done for F_q[SL_n] and (as key step) for F_q[M_n].
Gavarini, F., Rakic, Z. (2007). F_q[M_n], F_q[GL_n] and F_q[SL_n] as quantized hyperalgebras. JOURNAL OF ALGEBRA, 315(2), 761-800 [10.1016/j.jalgebra.2007.03.040].
F_q[M_n], F_q[GL_n] and F_q[SL_n] as quantized hyperalgebras
GAVARINI, FABIO;
2007-09-15
Abstract
Within the quantum function algebra F_q[GL_n], we study the subset F'_q[GL_n]— introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217–266] — of all elements of F_q[GL_n] which are Z[q,q^{−1}]-valued when paired with U'_q(gln), the unrestricted Z[q,q^{−1}]-integral form of U_q(gl_n) introduced by De Concini, Kac and Procesi. In particular we obtain a presentation of it by generators and relations, and a PBW-like theorem. Moreover, we give a direct proof that F'_q[GL_n] is a Hopf subalgebra of F_q[GL_n], and that F'_1[GL_n] - i.e., the specialization of F'_q[GL_n] at q=1 - is isomorphic to U(gl_n^*). We describe explicitly its specializations at roots of 1, say ε, and the associated quantum Frobenius (epi)morphism from F'_ε[GL_n] to F'_1[GL_n], also introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217–266]. The same analysis is done for F_q[SL_n] and (as key step) for F_q[M_n].File | Dimensione | Formato | |
---|---|---|---|
FqGLnQHyA_ART-ref.pdf
accesso aperto
Descrizione: This is the PDF file of the Authors' own post-print version
Licenza:
Copyright dell'editore
Dimensione
324.05 kB
Formato
Adobe PDF
|
324.05 kB | Adobe PDF | Visualizza/Apri |
FqGLnQHyA_STA.pdf
solo utenti autorizzati
Descrizione: This is the PDF file of the Authors' own offprint copy - i.e., the Editor's printed version
Licenza:
Copyright dell'editore
Dimensione
446.66 kB
Formato
Adobe PDF
|
446.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scopus-metadata.pdf
solo utenti autorizzati
Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
273.92 kB
Formato
Adobe PDF
|
273.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
WoS-metadata.pdf
solo utenti autorizzati
Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
154.32 kB
Formato
Adobe PDF
|
154.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.