Within the quantum function algebra F_q[GL_n], we study the subset F'_q[GL_n]— introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217–266] — of all elements of F_q[GL_n] which are Z[q,q^{−1}]-valued when paired with U'_q(gln), the unrestricted Z[q,q^{−1}]-integral form of U_q(gl_n) introduced by De Concini, Kac and Procesi. In particular we obtain a presentation of it by generators and relations, and a PBW-like theorem. Moreover, we give a direct proof that F'_q[GL_n] is a Hopf subalgebra of F_q[GL_n], and that F'_1[GL_n] - i.e., the specialization of F'_q[GL_n] at q=1 - is isomorphic to U(gl_n^*). We describe explicitly its specializations at roots of 1, say ε, and the associated quantum Frobenius (epi)morphism from F'_ε[GL_n] to F'_1[GL_n], also introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217–266]. The same analysis is done for F_q[SL_n] and (as key step) for F_q[M_n].

Gavarini, F., Rakic, Z. (2007). F_q[M_n], F_q[GL_n] and F_q[SL_n] as quantized hyperalgebras. JOURNAL OF ALGEBRA, 315(2), 761-800 [10.1016/j.jalgebra.2007.03.040].

F_q[M_n], F_q[GL_n] and F_q[SL_n] as quantized hyperalgebras

GAVARINI, FABIO;
2007-09-15

Abstract

Within the quantum function algebra F_q[GL_n], we study the subset F'_q[GL_n]— introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217–266] — of all elements of F_q[GL_n] which are Z[q,q^{−1}]-valued when paired with U'_q(gln), the unrestricted Z[q,q^{−1}]-integral form of U_q(gl_n) introduced by De Concini, Kac and Procesi. In particular we obtain a presentation of it by generators and relations, and a PBW-like theorem. Moreover, we give a direct proof that F'_q[GL_n] is a Hopf subalgebra of F_q[GL_n], and that F'_1[GL_n] - i.e., the specialization of F'_q[GL_n] at q=1 - is isomorphic to U(gl_n^*). We describe explicitly its specializations at roots of 1, say ε, and the associated quantum Frobenius (epi)morphism from F'_ε[GL_n] to F'_1[GL_n], also introduced in [F. Gavarini, Quantization of Poisson groups, Pacific J. Math. 186 (1998) 217–266]. The same analysis is done for F_q[SL_n] and (as key step) for F_q[M_n].
15-set-2007
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
Hopf algebras; quantum groups
http://www.sciencedirect.com/science/article/pii/S002186930700227X
Gavarini, F., Rakic, Z. (2007). F_q[M_n], F_q[GL_n] and F_q[SL_n] as quantized hyperalgebras. JOURNAL OF ALGEBRA, 315(2), 761-800 [10.1016/j.jalgebra.2007.03.040].
Gavarini, F; Rakic, Z
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
FqGLnQHyA_ART-ref.pdf

accesso aperto

Descrizione: This is the PDF file of the Authors' own post-print version
Licenza: Copyright dell'editore
Dimensione 324.05 kB
Formato Adobe PDF
324.05 kB Adobe PDF Visualizza/Apri
FqGLnQHyA_STA.pdf

solo utenti autorizzati

Descrizione: This is the PDF file of the Authors' own offprint copy - i.e., the Editor's printed version
Licenza: Copyright dell'editore
Dimensione 446.66 kB
Formato Adobe PDF
446.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 273.92 kB
Formato Adobe PDF
273.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 154.32 kB
Formato Adobe PDF
154.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/19248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact